四年级奥数讲义:容斥原理(共4页).doc
《四年级奥数讲义:容斥原理(共4页).doc》由会员分享,可在线阅读,更多相关《四年级奥数讲义:容斥原理(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上四年级数学讲义奥数:容斥原理(1)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。 2、培养学生的逻辑思维和数学思考能力。 3、培养学生良好的书写习惯。一、教学衔接二、教学内容(一)知识介绍容斥问题涉及到一个重要原理包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=NaNbNab。(二)例题精讲例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。又问:“谁
2、做完数学作业?请举手!”有42人举手。最后问:“谁语文、数学作业都没有做完?”没有人举手。求这个班语文、数学作业都完成的人数。【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有3742=79人,多于全班人数。这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。所以,这个班语文、数作业都完成的有:7948=31人。例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以
3、求出只答对第一题的有2515=10人。又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:1023=33人。所以,两题都答得不对的有3633=3人。例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:5625=31人,再求两科竞赛同时参加的人数:282731=24人。例4、1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?【分析与解答】从1到100的自然数中,减去5或6的倍数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四年级 讲义 原理
限制150内