转速﹑电流双闭环直流调速系统(共42页).doc
《转速﹑电流双闭环直流调速系统(共42页).doc》由会员分享,可在线阅读,更多相关《转速﹑电流双闭环直流调速系统(共42页).doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上引 言目前,转速电流双闭环控制直流调速系统是性能很好应用最广泛的直流调速系统。我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。故需要引入转速电流双闭环控制直流调速系统,本文着重阐明其控制规律性能特点和设计方法,是各种交直流电力拖动自动控制系统的重要基础。首先介绍转速电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。在实际应用中,电动机作为
2、把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。 长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。在现代化的工业生产中,几乎无处不使用电力拖动装置。轧钢
3、机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动系统至今仍广泛的应用着。直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。在一定时期以内,直流拖动仍将具有强大的生命力。 第一章 概 述1.1 直流电动机的原理直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
4、由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。因此,为了保持由浅入深的教学顺序,应该首先很好地掌握直流拖动控制系统。 从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统位置系统等多种类型,各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的电力拖动控制系统。直流电机转速和其他参量之间的稳态关系可表示为 (1-1) 式中 转速(r/min)。 电枢电压(V)。 电枢电流(A)。 R电枢回路总电阻(W)。 励磁磁通()。 由电机结构决定的电动势常数。由式(1-1)可以看出,调节电动机的转速有三种方法:1)调节电枢供电电压 U
5、。2)减弱励磁磁通 F。3)改变电枢回路电阻 R。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能实现有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。因此,自动控制的直流调速系统往往以变压调速为主。变压调速是直流调速系统的主要方法,调节电枢供电电压需要有专门向电动机供电的可控直流电源。接下来介绍几种主要的可控直流电源:1)旋转变流机组用交流电动机和直流发电机组成机组,以获得可调的直流电压。2)静止式可控整流器用静止式的可控整流器,以获得可调的直流电压。3)直流斩波器或脉宽调制变换器
6、用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。1.1.1 转速控制的要求和调速指标任何一台需要控制转速的设备,其生产工艺对调速性能都有一定的要求。归纳起来,对于调速系统的转速控制要求有以下三个方面:1)调速在一定的最高转速和最低转速范围内,分档地(有级)或 平滑地(无级)调节转速;2)稳速以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量;3)加、减速频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起制动尽量平稳。为了进行定量的分析,可以针对前两项要求定义两个调速指标,叫“调
7、速范围”和“静差率”。这两个指标合称调速系统的稳态性能指标。1调速范围生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,用字母 表示,即 (1-2)其中和一般都指电机额定负载时的最高和最低转速,对于少数负载很轻的机械,例如精密磨床,也可用实际负载时的最高和最低转速。2静差率当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降落,与理想空载转速之比,称作静差率,即 (1-3)或用百分数表示 (1-4)显然,静差率是用来衡量调速系统在负载变化时转速的稳定度的,它和机械特性的硬度有关,特性越硬,静差率越小,转速的稳定度就越高。在了解了这些后,再来介绍一下转速负反馈闭环直流调
8、速系统。1.2 闭环调速系统的组成根据自动控制原理,反馈控制的闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。 调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统应该能够大大减少转速降落。图1-1 带转速负反馈的闭环直流调速系统原理框图上图为带转速负反馈的闭环直流调速系统原理框图。在反馈控制的闭环直流调速系统中,与电动机同轴安装一台测速发电机TG ,从而引出与被调量转速成正比的负反馈电压,与给定电压相比较后,得到转速偏差电压,经过放大器A,产生电力电子变换器UPE所需的控制电压,用以控制电动机转速。图中,UPE是由电力电子器件组
9、成的变换器,其输入接三相(或单相)交流电源,输出为可控的直流电压。对于中、小容量系统,多采用由IGBT或P-MOSFET组成的PWM变换器;对于较大容量的系统,可采用其他电力电子开关器件,如GTO、IGCT等;对于特大容量的系统,则常用晶闸管触发与整流装置。1.2.1 反馈控制规律介绍了以上这些之后,再来看下他的反馈控制规律:转速反馈闭环调速系统是一种基本的反馈控制系统,它具有以下三个基本特征,也就是反馈控制的基本规律,各种不另加其他调节器的基本反馈控制系统都服从于这些规律。1被调量有静差从原理图1-1中分析可以看出,由于采用了比例放大器,闭环系统的开环放大系数K值越大,系统的稳态性能越好。然
10、而,只要所设置的放大器仅仅是一个比例放大器,即=常数,稳态速差就只能减小,却不可能消除。因为闭环系统的稳态速降为 (1-5)只有 ,才能使 ,而这是不可能的。因此,这样的调速系统叫做有静差调速系统。实际上,这种系统正是依靠被调量的偏差进行控制的。2抵抗扰动, 服从给定反馈控制系统具有良好的抗扰性能,它能有效地抑制一切被负反馈环所包围的前向通道上的扰动作用,但对给定作用的变化则唯命是从。扰动除给定信号外,作用在控制系统各环节上的一切会引起输出量变化的因素都叫做“扰动作用”。 调速系统的扰动源有:1)负载变化的扰动(使变化)。2)交流电源电压波动的扰动(使Ks变化)。3)电动机励磁的变化的扰动(造
11、成Ce 变化 )。4)放大器输出电压漂移的扰动(使Kp变化)。5)温升引起主电路电阻增大的扰动(使R变化)。6)检测误差的扰动(使a变化)。 3系统的精度依赖于给定和反馈检测的精度给定精度由于给定决定系统输出,输出精度自然取决于给定精度。如果产生给定电压的电源发生波动,反馈控制系统无法鉴别是对给定电压的正常调节还是不应有的电压波动。因此,高精度的调速系统必须有更高精度的给定稳压电源。检测精度反馈检测装置的误差也是反馈控制系统无法克服的,因此检测精度决定了系统输出精度。1.2.2 限流保护电流截止负反馈起动的冲击电流直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向
12、不利,对过载能力低的电力电子器件来说,更是不能允许的。采用转速负反馈的闭环调速系统突然加上给定电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零,相当于偏差电压,差不多是其稳态工作值的(1+K)倍。这时,由于放大器和变换器的惯性都很小,电枢电压一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。堵转电流有些生产机械的电动机可能会遇到堵转的情况。例如,由于故障使机械轴被卡住,或挖土机运行时碰到坚硬的石块等等。由于闭环系统的静特性很硬,若无限流环节,硬干下去,电流将远远超过允许值。如果只依靠过流继电器或熔断器保护,一过载就跳闸,也会给正常工作带来不便。为了解决反馈闭环调速系
13、统的起动和堵转时电流过大的问题,系统中必须有自动限制电枢电流的环节。根据反馈控制原理,要维持哪一个物理量基本不变,就应该引入那个物理量的负反馈。那么,引入电流负反馈,应该能够保持电流基本不变,使它不超过允许值。 以上就是关于转速负反馈闭环直流调速系统的一些内容,为了实现更好的控制效果,我们需要让电流负反馈和转速负反馈分别起作用,这就是我要设计的转速电流双闭环直流调速系统。下面一章就是关于此系统的介绍。第二章 转速电流双闭环直流调速系统介绍2.1 转速电流双闭环直流调速系统的组成及其静特性对于一个完整的系统而言,系统所要达到的性能指标、整个系统的综合性价比以及系统的运行稳定性、工作的可靠性等都是
14、相当重要的,这就要求我们考虑问题要非常周全,能够考虑到各方面因素对整个系统运行所产生的影响。直流调速系统,传统上采用速度和电流的双闭环调速。这是从单闭环自动调速系统发展起来的。采用PI控制器的单闭环系统,虽然实现了转速的无静差调速,但因其结构中含有电流截止负反馈环节,限制了起制动的最大电流。加上电机反电势随着转速的上升而增加,使电流达到最大值之后迅速降下来。这样,电动机的转速也减小下来,使起动过程变慢,起动时间增长。为了提高生产率和加工质量,要求尽量缩短过渡过程时间。我们希望使电流在起动时始终保持在最大允许值上,电动机输出最大转矩,从而可使转速直线上升过渡过程时间大大缩短。另一方面,在一个调节
15、器的情况下,输入端综合几个信号,各参数互相影响,调整也比较困难。为获得近似理想的起动过程,并克服几个信号在一处的综合的缺点,经研究与实践,出现了转速、电流双闭环调速系统。在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环直流调速系统起动电流和转速波形如图2-1a)所示,起动电流突破以后,受电流负反馈的作用,电流只能再升高一点,经过某一最大值后,就降低下来,电机的电磁转矩也随之减小,因而加速过程必然拖长。对于经常正反转运行的调速系统,尽量缩短起、制动过程的时间是
16、提高生产率的重要因素。为此,在电机最大允许电流和转矩受限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b)。这时,起动电流呈方形波,转速按线性增长。这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程。实际上,由于主电路电感的作用,电流不可能突跳,图2-1b)所示的理想波形只能得到近似的逼近,不可能准确实现。为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,
17、采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。这就要求系统在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只有转速负反馈,不再让电流负反馈发挥作用,怎样才能做到这种既存在转速和电流两种负反馈,又使它们只能分别在不同的阶段里起作用呢?只用一个调节器显然是不可能的,可以考虑采用转速和电流两个调节器,问题是在系统中应该如何联接。 a)带电流截止负反馈的单闭环直流调速系统起动过程b)理想的快速起动过程图2-1 直流调速系统起动过程的电流和转速波形2.1.1 转速电流双闭环直流调速系统的组成 为了实现转速和电流两种负反馈分别起作用,可在系
18、统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图2-2所示。图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。图2-2 转速电流双闭环直流调速系统ASR转速调节器 ACR电流调节器 TG测速发电机TA电流互感器 UPE电力电子变换器转速给定电压 转速反馈电压电流给定电压 电流反馈电压为了获得良好的静动态性能,转速和电流两个调节器一般都采用PI调节器,这样构成的双闭环直流调速系统的电路原理图
19、如上图2-3所示。 图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压为正电压的情况标出的,并考虑到运算放大器的倒相作用。图中还标出了两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压决定了电流给定电压的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压。图2-3 双闭环直流调速系统电路原理图2.1.2 转速电流双闭环直流调速系统的稳态结构框图和静特性 Ks a 1/CeU*nUcIdEnUd0Un+-ASR+U*i- R b ACR-UiUPE为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构框图,如图2-4所示。它可以很方
20、便地根据原理图(见图2-3)画出来,只要注意用带限幅的输出特性表示PI调节器就可以了。分析静特性的关键是掌握这样的PI调节器的稳态特征,一般存在两种状况:饱和输出达到限幅值,不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。当调节器不饱和时,PI的作用使输入偏差电压在稳态时总为零。图2-4 双闭环直流调速系统的稳态结构框图a转速反馈系数; b 电流反馈系数实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和
21、两种情况。1转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此由第一个关系式可得 (2-1)从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和,从上述第二个关系式可知。这就是说,CA段特性从理想空载状态的一直延续到,而一般都是大于额定电流的。这就是静特性的运行段,它是一条水平的特性。2转速调节器饱和这时,ASR输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差的单电流闭环调节系统。稳态时 (2-2)其中,最大电流是由设计者选定的,取决于电动机的容许过载能力和拖动系统允许的最大加速度。式(2-2)所描述的静特性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 转速 电流 闭环 直流 调速 系统 42
限制150内