第十九章四边形导学案(共25页).doc
《第十九章四边形导学案(共25页).doc》由会员分享,可在线阅读,更多相关《第十九章四边形导学案(共25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十九章 四边形课题 19.1 平行四边形 课时:四课时第一课时 19.1.1平行四边形的性质【学习目标】1. 理解平行四边形的定义及有关概念。2. 能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。3. 了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。【重点难点】 重点:平行四边形的概念和性质。 难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法(即为什么要添加对角线)【导学指导】 现实世界中,四边形也在装点着我们的生活,宏伟的建筑物,铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝处处都有四边形的身影。在小学,我
2、们已经学过一些特殊的四边形,如长方形、正方形、平行四边形和梯形等,这些特殊的四边形与我们的生活关系更为密切。在章前图中,你能找出它们吗?在本章,我们将进一步认识这些特殊的四边形,分析它们的联系与区别,探索并证明它们的性质及判定方法,进一步提高分析问题、解决问题的能力。 学习新知: 阅读教材P83-P84内容,思考、讨论、合作交流后完成下列问题:1.什么叫做平行四边形?如何表示一个平行四边形?2.四边形与平行四边形有怎样的从属关系?你能举出生活中的平行四边形的例子吗?3.平行四边形有什么性质?你能证明吗?【课堂练习】1. 教材P84练习第1,2,3题。2.如图在平行四边形ABCD中,如果EFAD
3、,GHCD,EF与GH相交于点O,那么图中的平行四边形一共有( ) A4个 B。5个 C。8个 D。9个3.在平行四边形ABCD中,AB的度数之比为5:4,则C等于 ( ) A60 B.80 C.100 D.120【要点归纳】 通过学习,本节课你学到了哪些知识?与同伴交流一下。【拓展训练】 已知任意三点A、B、C,是否存在点D,使A、B、C、D围成一个平行四边形?如果存在,请你作出平行四边形;如果不存在请说明理由。第二课时 平行四边形的性质(2)【学习目标】1. 探索并掌握平行四边形的性质:平行四边形的对角线互相平分。2. 会运用平行四边形的性质进行推理和计算。【重点难点】 重点:平行四边形的
4、对角线互相平分 难点:平行四边形性质的灵活运用及几何计算题的解题表达。【导学指导】 复习旧知:1. 平行四边形是如何定义的?生活中有什么物体是平行四边形形状的?2. 前面我们学习了平行四边形的哪些性质?3. 我们是如何证明平行四边形的这些性质的? 学习新知: 自主学习教材P85-P86内容,思考,讨论,合作交流后完成下列问题。1. 如下图所示,平行四边形ABCD的对角线有什么特征?请用文字语言叙述并用数学符号表示出来。 2. 你能证明你叙述的对角线的特征吗?3. 你发现了吗?平行四边形的问题都是如何解决的?【课堂练习】1. 教材P86练习第1,2题。2. 已知平行四边形ABCD的周长是48cm
5、,AB比BC长4cm,那么这个四边形的各边长为多少? 3. 在平行四边形ABCD中,已知B+D=140,求C的度数。4. 平行四边形ABCD的周长为60cm,AOB的周长比COB的周长大8cm,则AB= ,BC= 。【要点归纳】1. 完成下列表格:平行四边形的图形平行四边形的边平行四边形的角平行四边形的对角线2. 解决平行四边形问题的常用辅助线是什么? 3.你还有哪些收获?【拓展训练】 如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵梨树,田村准备开始挖池塘建养鱼池,想使建后的鱼池面积为原来池塘面积的两倍,又想保持梨树不动,并要求建后的池塘成为平行四边形形状。请问田村能否
6、实现这一设想?若能,请你设计并画出图形,若不能,请说明理由。(画图保留痕迹,不写画法) 第三课时 19.1.2 平行四边形的判定(1)【学习目标】1. 运用类比的方法,得出平行四边形的两个判定方法。2. 会运用这两个判定方法解决简单的问题。【重点难点】 重点:平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合应用。 难点:对平行四边形判定方法的证明以及平行四边形的性质和判定的综合应用。【导学指导】 复习旧知:1. 平行四边形的定义是什么?它有什么作用?2. 平行四边形还有哪些性质?3. 你能说出上述三条性质的逆命题吗?把它们有文字表达出来。 学习新知:自主学习教材P86-P87相关
7、内容,思考、讨论合作交流完成下列问题:1.平行四边形的三条性质的逆命题是真命题吗?如何证明的? 2.现在你有多少种判定平行四边形的方法了?它们分别是从四边形的哪些方面去考虑的?【课堂练习】1. 教材P87练习题第1,2题。2. 在同一平面内,把两个全等的三角形(如图),按不同的方法拼成四边形,(1) 可以拼成几个不同的四边形?(2) 它们都是平行四边形吗?【要点归纳】 本节课你有哪些收获?【拓展训练】1. 如图,已知点M、N分别是平行四边形ABCD的边AB、DC的中点。求证:四边形AMCN是平行四边形。2. 如图,在平行四边形ABCD中,E、F、G、H分别是各边中点。求证:四边形EFGH是平行
8、四边形。第四课时 19.1.2 平行四边形的判定(2)【学习目标】1. 掌握用一组对边平行且相等来判定平行四边形的方法。2. 理解和领会三角形三角形中位线定理及其应用。3. 会综合应用平行四边形的四种判定方法和性质来证明问题。【重点难点】 重点:1.平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法; 2.理解并应用三角形中位线定理。 难点:1.平行四边形的判定定理与性质定理的综合应用。2.理解三角形中位线定理的推导,感悟几何的思维方法。【导学指导】 复习旧知:1. 平行四边形的定义是什么?2. 平行四边形具有哪些性质?3. 平行四边形是如何判定的?学习新知: 阅读教材P8
9、8-P90相关内容,思考、讨论、合作交流后完成下列问题:1. 今天又有了一种判定平行四边形的方法,是什么?如何证明?2. 你看得懂例4吗?它是如何思考解决问题的?由例4我们知道了三角形的中位线的性质,是什么?3. 什么是两条平行线间的距离?我们还学过点与点之间的距离,点到直线的距离,它们有何联系与区别?【课堂练习】1. 教材P90练习第1,2,3题。2. 如图,平行四边形ABCD中,对角线AC、BD相交于O,E、F分别为BO、DO的中点。求证:AFCE(请你用两种方法证明)【要点归纳】 今天你有哪些收获?与同伴交流一下。【拓展训练】 如图,已知BE、CF分别为ABC中B、C的平方线,AMBE于
10、M,ANCF于N, 求证:MNBC 课题 19.2 特殊的平行四边形 课时:五课时 第一课时 19.2.1 矩形的性质【学习目标】1. 掌握矩形的性质定理及推论。2. 能熟练应用矩形的性质进行有关证明和计算。【重点难点】 重点:掌握矩形的性质定理。 难点:利用矩形的性质进行证明和计算。【导学指导】 阅读教材P94-P96相关内容,思考、讨论、合作交流后完成下列问题:1. 什么是矩形?2. 矩形是特殊的平行四边形,平行四边形具有的性质它有没有?平行四边形的边有什么性质?角呢?对角线呢?那么它特殊在什么地方?所以它有什么性质?如何记住它呢?3. 矩形的一条对角线把它分成了两个什么三角形?由矩形的性
11、质,你可以得到这个三角形的什么性质?【课堂练习】1. 教材P95练习第1,2,3题。2. RtABC中,两条直角边分别为6和8,则斜边上的中线长为 。【要点归纳】 今天你有什么收获?与同伴交流一下。【拓展训练】1. 将矩形纸片ABCD沿对角线BD对折,再折叠使AD与对角线BD重合,得折痕DG,若AB=8,BC=6,求AG的长。 2. 在四边形ABCD中,ABC=ADC=90,E是AC的中点,EF平分BED交BD于点F。(1) 猜想:EF与BD具有怎样的关系?(2) 试证明你的猜想。 第二课时 矩形的判定【学习目标】1. 理解并掌握矩形的判定方法。2. 能应用矩形定义、判定等知识,解决简单的证明
12、题和计算题,进一步培养分析能力。【重点难点】 重点:矩形的判定定理及推论。 难点:定理的证明方法及运用。【导学指导】 复习旧知:1. 什么是平行四边形?什么是矩形?2. 矩形有哪些性质?你能猜想如何判定矩形吗? 学习新知: 阅读教材P95-P96相关内容,思考、讨论、合作交流后完成下列问题:1. 利用矩形的定义可以判定一个平行四边形是矩形,由此你发现什么?2. 还有哪些方法可以证明一个四边形是矩形?如何证明?试一试。【课堂练习】1. 教材P96练习第1,2题。2. 下列各句判定矩形的说法是否正确?为什么?(1) 有一个角是直角的四边形是矩形。(2) 有四个角是直角的四边形是矩形。(3) 四个角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十九 四边形 导学案 25
限制150内