高中数学最全必修一函数性质详解及知识点总结及题型详解(共9页).doc
《高中数学最全必修一函数性质详解及知识点总结及题型详解(共9页).doc》由会员分享,可在线阅读,更多相关《高中数学最全必修一函数性质详解及知识点总结及题型详解(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射集合A,B是平面直角坐标系上的两个点集,给定从AB的映射f:(x,y)(x2+y2,xy),求象(5,2)的原象.3.已知集合A到集合B0,1,2,3的映射f:x,则集合A中的元素最多有几个?写出元素最多时的集合A.2、函数。构成函数概念的三要素 定义域对应法则值域两个函数是同一个函数的条件:三要素有两个相同1、下列各对函数中,相同的是 ( )A、 B、 C、 D、f(x)=x,2、给出下列
2、四个图形,其中能表示从集合M到集合N的函数关系的有 ( )A、 0个 B、 1个 C、 2个 D、3个xxxx1211122211112222yyyy3OOOO二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。例1 设是一次函数,且,求配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。 例2 已知 ,求 的解析式三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3 已知,求四、代
3、入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5 设求例6 设为偶函数,为奇函数,又试求的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:,对于任意实数x、y,等式恒成立,求七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8 设是上的函数,满足,
4、对任意的自然数 都有,求1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1; 6.(05江苏卷)函数的定义域为2求函数定义域的两个难点问题(1) (2) 例2设,则的定义域为_变式练习:,求的定义域。三、函数的值域1求函数值域的方法直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且R的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 函数 性质 详解 知识点 总结 题型
限制150内