基本初等函数经典总结(共8页).doc
《基本初等函数经典总结(共8页).doc》由会员分享,可在线阅读,更多相关《基本初等函数经典总结(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十二讲 基本初等函数一:教学目标1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质;2、理解基本初等函数的性质;3、掌握基本初等函数的应用,特别是指数函数与对数函数二:教学重难点教学重点:基本初等函数基本性质的理解及应用;教学难点:基本初等函数基本性质的应用三:知识呈现1.指数与指数函数1).指数运算法则:(1);(2);(3);(4);(5)(6)2). 指数函数:形如指数函数 0a1图 象表达式定义域值 域过定点单调性单调递减单调递增2.对数函数1)对数的运算:1、 互化:2、 恒等:3、 换底: 推论1 推论2 推论3 4、 5、2)对数函数:对数函
2、数 0a1图 象表达式定义域值 域过定点(1,0)单调性单调递减单调递增3.幂函数一般地,形如 ()的函数叫做幂函数,其中a 是常数1)性质:(1) 所有的幂函数在(0,+)都有定义,并且图象都通过点(1, 1);(2) 如果,则幂函数图象通过(0,0),并且在区间0,+)上是增函数;(3) 如果,则幂函数在区间(0,+)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地逼近y轴,当x趋于+时,图象在x轴上方无限逼近x轴。四:典型例题考点一:指数函数例1已知,则x的取值范围是_分析:利用指数函数的单调性求解,注意底数的取值范围解:,函数在上是增函数,解得x的取值范围是评注:
3、利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论例2函数在区间上有最大值14,则a的值是_分析:令可将问题转化成二次函数的最值问题,需注意换元后的取值范围解:令,则,函数可化为,其对称轴为当时,即当时,解得或(舍去);当时,即, 时,解得或(舍去),a的值是3或评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等例3求函数的定义域和值域解:由题意可得,即,故 函数的定义域是令,则,又, ,即,即函数的值域是评注:利用指数函数的单调性求值域时,要注意定义域对它的影响例4 求函数y的单调区间.分析
4、 这是复合函数求单调区间的问题可设y,ux2-3x+2,其中y为减函数ux2-3x+2的减区间就是原函数的增区间(即减减增)ux2-3x+2的增区间就是原函数的减区间(即减、增减)解:设y,ux2-3x+2,y关于u递减,当x(-,)时,u为减函数,y关于x为增函数;当x,+)时,u为增函数,y关于x为减函数.考点二:对数函数例5 求下列函数的定义域(1)y=log2(x2-4x-5);(2)y=logx+1(16-4x)(3)y= 解:(1)令x2-4x-50,得(x-5)(x+1)0,故定义域为 xx-1,或x5(2)令 得 故所求定义域为x-1x0,或0x2(3)令 ,得 故所求定义域为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 初等 函数 经典 总结
限制150内