一次函数应用题(共54页).doc
《一次函数应用题(共54页).doc》由会员分享,可在线阅读,更多相关《一次函数应用题(共54页).doc(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年06月29日一次函数应用题一解答题(共30小题)1用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元设在同一家复印店一次复印文件的页数为x(x为非负整数)(1)根据题意,填写下表:一次复印页数(页)5102030甲复印店收费(元)0.5 2 乙复印店收费(元)0.6 2.4 (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x70时,顾客在哪家复印店复印花费少?请说明理
2、由2某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品已知每件文化衫28元,每本相册20元(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由3某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队
3、单独做需要18天才能完成(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值4为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商
4、店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?5自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的
5、件数不大于B型的件数,且不小于80件已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益6某蔬菜加工公司先后两批次收购蒜薹(ti)共100吨第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨这两批蒜苔共用去16万元(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:
6、粗加工每吨利润400元,精加工每吨利润1000元要求精加工数量不多于粗加工数量的三倍为获得最大利润,精加工数量应为多少吨?最大利润是多少?7某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?8某工厂有甲种原料130kg,乙种原料144kg现用这两种原料生产出A,B两种产品共30件已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品
7、可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润9如图,已知反比例函数y=的图象经过点A(4,m),ABx轴,且AOB的面积为2(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当3x1时,求函数值y的取值范围10科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:在科研所到宿舍楼之间修一条笔直的道路;对
8、宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0x9)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费(1)当科研所到宿舍楼的距离x=9km时,防辐射费y= 万元,a= ,b= ;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值11为了迎接“十一”小长假的购物
9、高峰某运动品牌专卖店准备购进甲、乙两种运动鞋其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)mm20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50a70)元出售,乙种运动鞋价格不变那么该专卖店要获得最大利润应如何进货?12某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,
10、乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?13为增强公民的
11、节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费 元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?14某饮料厂以300千克的A种果汁
12、和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克)(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?15为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套投入资金不超过200万元,又不低于198万元开
13、发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案16某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元/件)25利
14、润(万元/件)13(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润17现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)Ax B (2)设总运费为W元,请写出W与x的函数关系式(3)怎样调运蔬菜才能使运费最少?
15、18一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究解读信息:(1)甲,乙两地之间的距离为 km;(2)线段AB的解析式为 ;线段OC的解析式为 ;问题解决:(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象19库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库已知C仓库可储存240吨,D仓库
16、可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为yA元,yB元(1)请填写下表,并求出yA,yB与x之间的函数关系式;CD总计Ax吨200吨B300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值20为了迎接“五一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元(1)若该专卖店同时购进甲、
17、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0a20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货?21某商场计划购进冰箱、彩电进行销售相关信息如下表:进价(元/台)售价(元/台)冰箱a2500彩电a4002000(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值(2)为了满
18、足市场需要求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的该商场有哪几种进货方式?若该商场将购进的冰箱、彩电全部售出,获得的最大利润为w元,请用所学的函数知识求出w的值222011年11月6日下午,广西第一条高速铁路南宁至钦州铁路扩能改造工程正式进入铺轨阶段现要把248吨物资从某地运往南宁、钦州两地,用大、小两种货车共20辆,恰好能一次性运完这批物资已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往南宁、钦州两地的运费如下表:运往地车型南宁(元/辆)钦州(元/辆)大货车620700小货车400550(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往南宁
19、,其余货车前往钦州,设前往南宁的大货车为a辆,前往南宁、钦州两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往南宁的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费23青神竹编,工艺精美,受到人们的喜爱,有一客商到青神采购A、B两种竹编工艺品回去销售,其进价和回去的售价如右表所示若该客商计划采购A、B两种竹编工艺品共60件,所需总费用为y元,其中A型工艺品x件型 号AB进价(元/件)15080售价(元/件)200100(1)请写出y与x之间的函数关系式;(不求出x的取值范围)(2)若该客商采购的B型工艺品不少于14件,且
20、所获总利润要求不低于2500元,那么他有几种采购方案?写出每种采购方案,并求出最大利润24我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费如果你是这个部门的负责人,你应选哪家宾馆更实惠些?252010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”为了响应节能减排的号召,某品牌汽车4S店准备购
21、进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求市场营销人员经过市场调查得到如下信息:成本价(万元/辆)售价(万元/辆)A型3032B型4245(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由26某个体小服装准备在夏季来临前,购
22、进甲、乙两种T恤,在夏季到来时进行销售两种T恤的相关信息如下表: 品牌甲 乙 进价(元/件) 35 70 售价(元/件) 65 110根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出请直接写出该店按哪种方案进货才能使所获利润最大27某商场计划采购甲、乙、丙三种型号的“格力”牌空调共25台三种型号的空调进价和售价如下表:种类/价格甲乙
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 应用题 54
限制150内