专题四-1动能定理和机械能守恒定律(共18页).doc
《专题四-1动能定理和机械能守恒定律(共18页).doc》由会员分享,可在线阅读,更多相关《专题四-1动能定理和机械能守恒定律(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上普通高中课程标准实验教科书物理(人教版)专题四 动能定理和机械能守恒定律【命题趋向】大纲对本部分考点均为类要求,即对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分量重,而且还经常有高考压轴题。考查最多的是动能定理和机械能守恒定律。易与本部分知识发生联系的知识有:牛顿运动定律、圆周运动、带电粒子在电场和磁场中的运动等,一般过程复杂、难度大、能力要求高。本考点的知识还常考查考生将物理问题经过分析、推理转化为数学问题
2、,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。【考点透视】一、理解功的概念 1功是力的空间积累效应。它和位移相对应。计算功的方法有两种:按照定义求功。即:W=Fscos。 在高中阶段,这种方法只适用于恒力做功。当时F做正功,当时F不做功,当时F做负功。 这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。用动能定理W=Ek或功能关系求功。当F为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了
3、该过程中对应的功的数值。2会判断正功、负功或不做功。判断方法有:用力和位移的夹角判断;用力和速度的夹角判断定;用动能变化判断.3了解常见力做功的特点:重力(或电场力)做功和路径无关,只与物体始末位置的高度差h(或电势差)有关:W=mgh(或W=qU),当末位置低于初位置时,W0,即重力做正功;反之则重力做负功。滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。二、深刻理解功率的概念 1功率的物理意义:功率是描述做功快慢的物理量。2功率的定义式:,所求出的功率是时间t内的平均功率。3功率的计算
4、式:P=Fvcos,其中是力与速度间的夹角。该公式有两种用法:求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。4重力的功率可表示为PG=mgVy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。三、深刻理解动能的概念,掌握动能定理。1动能是物体运动的状态量,而动能的变化EK是与物理过程有关的过程量。2动能定理的表述合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为W=EK.动能定理建立起
5、过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。四、掌握机械能守恒定律。1.机械能守恒定律的两种表述在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。 2.对机械能守恒定律的理解: 机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能
6、中所用的v,也是相对于地面的速度。 当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。 “只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功或除重力之外的力做功的代数和为零。2.机械能守恒定律的各种表达形式,即; 用时,需要规定重力势能的参考平面。用时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用E增=E减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。五、深刻理解
7、功能关系,掌握能量守恒定律。1做功的过程是能量转化的过程,功是能的转化的量度。 能量守恒和转化定律是自然界最基本的规律之一。而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。本章的主要定理、定律都可由这个基本原理出发而得到。需要强调的是:功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。 2复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。突出:“功是能量转化的量度”这一基本概念。物体动能的增量由外力做的总功来量度:W外=Ek,这就是动能定理。物体重力势能的
8、增量由重力做的功来量度:WG= -EP,这就是势能定理。同理:电场力做功量度电势能的变化,即W电= -EP。物体机械能的增量由重力以外的其他力做的功来量度:W其=E机,(W其表示除重力以外的其它力做的功),这就是机械能定理。当W其=0时,说明只有重力做功,所以系统的机械能守恒。一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。Q=fd(d为这两个物体间相对移动的路程)。【例题解析】类型一:功和功率的计算例1如下图甲所示,质量为m的物块与倾角为的斜面体相对静止,当斜面体沿水平面向左匀速运动位移时,求物块所受重力、支持力、摩擦力做的功和合力做的
9、功。解析:物块受重力,如上图乙所示,物块随斜面体匀速运动,所受合力为零,所以,。物块位移为支持力的夹角为,支持力做功 。静摩擦力的夹角为做的功.合力是各个力做功的代数和方法技巧:(1)根据功的定义计算功时一定要明确力的大小、位移的大小和力与位移间的夹角。本题重力与位移夹角支持力做正功,摩擦力与位移夹角为摩擦力做负功。一个力是否做功,做正功还是做负功要具体分析。(2)合力的功一般用各个力做功的代数和来求,因为功是标量,求代数和较简单。如果先求合力再求功,则本题合力为零,合力功也为零。变式训练1:质量为m=0.5kg的物体从高处以水平的初速度V0=5m/s抛出,在运动t=2s内重力对物体做的功是多
10、少?这2s内重力对物体做功的平均功率是多少?2s末,重力对物体做功的瞬时功率是多少?(g取)类型二:机车启动问题例2电动机通过一绳子吊起质量为8 kg的物体,绳的拉力不能超过120 N,电动机的功率不能超过1200 W,要将此物体由静止起用最快的方式吊高90 m(已知此物体在被吊高接近90 m时,已开始以最大速度匀速上升)所需时间为多少?解析:此题可以用机车起动类问题的思路,即将物体吊高分为两个过程处理:第一过程是以绳所能承受的最大拉力拉物体,使物体以最大加速度匀加速上升,第一个过程结束时,电动机刚达到最大功率.第二个过程是电动机一直以最大功率拉物体,拉力逐渐减小,当拉力等于重力时,物体开始匀
11、速上升.在匀加速运动过程中加速度为a= m/s2=5 m/s2,末速度Vt=10 m/s 上升的时间t1=s=2 s,上升高度为h=10 m在功率恒定的过程中,最后匀速运动的速率为Vm=15 m/s外力对物体做的总功W=Pmt2-mgh2,动能变化量为Ek=mV2m-mVt2由动能定理得Pmt2-mgh2=mVm2-mVt2代入数据后解得t2=5.75 s,所以t=t1+t2=7.75 s所需时间至少为7.75 s.点评:机车运动的最大加速度是由机车的最大牵引力决定的,而最大牵引力是由牵引物的强度决定的。弄清了这一点,利用牛顿第二定律就很容易求出机车运动的最大匀加速度。变式训练2:汽车的质量为
12、m,发动机的额定功率为P,汽车由静止开始沿平直公路匀加速启动,加速度为a,假定汽车在运动中所受阻力为f(恒定不变),求汽车能保持作匀加速运动的时间。类型三:动能定理的应用例3如图所示,质量为m的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F作用下,以恒定速率v0竖直向下运动,物体由静止开始运动到绳与水平方向夹角=45过程中,绳中拉力对物体做的功为Fv0Amv02 Bmv02Cmv02 Dmv02解析:物体由静止开始运动,绳中拉力对物体做的功等于物体增加的动能。物体运动到绳与水平方向夹角=45时的速率设为v,有:vcos45=v0,则:v=v0所以绳的拉力对物体做的功为W
13、=答案:B。题后反思:本题涉及到运动的合成与分解、功、动能定理等多方面知识。要求考生深刻理解动能定理的含义,并能够应用矢量的分解法则计算瞬时速度。变式训练3:质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用已知小球经过最低点时轻绳受的拉力为7mg,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为 ( )AmgL/4 BmgL/3 CmgL/2 DmgL类型四:机械能守恒定律的应用例4如图所示,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、m(为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球
14、相撞,碰撞后A、B球能达到的最大高度均为,碰撞中无机械能损失。重力加速度为g。试求:(1)待定系数。(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力。解析:(1)由机械能守恒定律得 故。(2)设A、B第一次碰撞后的速度大小分别为、,则,故,向左;向右;设轨道对B球的支持力为,B球对轨道的压力为,由牛顿第三定律知,方向竖直向下。点评:对物理问题进行逻辑推理得出正确结论和作出正确判断,并把推导过程正确地表达出来,体现了对推理能力的考查,希望考生注意这方面的训练。特别是第三问设问有一定的开放性,考生应先弄清题目中的情景和事件,分析出前两次或三次碰撞后的特点再找规律对问题作解答,类似数学
15、归纳思想。变式训练4:(08江苏卷)如图所示,两光滑斜面的倾角分别为30和45,质量分别为2和的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放则在上述两种情形中正确的有质量为2的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用B质量为的滑块均沿斜面向上运动C绳对质量为滑块的拉力均大于该滑块对绳的拉力D系统在运动中机械能均守恒类型五:功能关系的应用例5如图所示,一轻弹簧左端固定在长木板M的左端,右端与小木块m连接,且m、M及M与地面间摩擦不计开始时,m和M均静止,现同时对m、M施加等大反向的水平恒力F1和F2
16、,设两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度。对于m、M和弹簧组成的系统 A由于F1、F2等大反向,故系统机械能守恒B当弹簧弹力大小与F1、F2大小相等时,m、M各自的动能最大C由于F1、F2大小不变,所以m、M各自一直做匀加速运动D由于F1、F2均能做正功,故系统的机械能一直增大解析:由于F1、F2对系统做功之和不为零,故系统机械能不守恒,A错误;当弹簧弹力大小与F1、F2大小相等时,速度达到最大值,故各自的动能最大,B正确;由于弹力是变化的,m、M所受合力是变化的,不会做匀加速运动,C错误;由于F1、F2先对系统做正功,当两物块速度减为零时,弹簧的弹力大于F1、F2,之
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 动能 定理 机械能 守恒定律 18
限制150内