二倍角的正弦、余弦和正切公式(基础)(共10页).doc
《二倍角的正弦、余弦和正切公式(基础)(共10页).doc》由会员分享,可在线阅读,更多相关《二倍角的正弦、余弦和正切公式(基础)(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二倍角的正弦、余弦和正切公式(基础)【学习目标】1能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系.2能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式但不要求记忆),能灵活地将公式变形并运用3通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用.【要点梳理】要点一:二倍角的正弦、余弦、正切公式1二倍角的正弦、余弦、正切公式要点诠释:(1)公式成立的条件是:在公式中,角可以为任意角,但公式中,只有当及时才成立;(2)
2、倍角公式不仅限于是的二倍形式,其它如是的二倍、是的二倍、是的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:;2和角公式、倍角公式之间的内在联系 在两角和的三角函数公式时,就可得到二倍角的三角函数公式,它们的内在联系如下:要点二:二倍角公式的逆用及变形1公式的逆用;2公式的变形;降幂公式:升幂公式:要点三:两角和与差的三角函数公式能够解答的三类基本题型求值题、化简题、证明题1对公式会“正着用”,“逆着用”,也会运用代数变换中的常用方法:因式分解、配方、凑项、添项、换元等;2掌握“角的演变”规律,寻求所求结论中的角与已知条件中的角的
3、关系,如等等,把握式子的变形方向,准确运用公式,也要抓住角之间的规律(如互余、互补、和倍关系等等);3将公式和其它知识衔接起来使用,尤其注意第一章与第三章的紧密衔接.【典型例题】类型一:二倍角公式的简单应用例1化简下列各式:(1);(2);(3)【思路点拨】逆用二倍角的正弦、余弦和正切公式【答案】(1)(2)(3)【解析】 (1)(2)(3)【总结升华】本题的解答没有去就单个角求其函数值,而是将所给式子作为一个整体变形,逐步向二倍角公式的展开形式靠近,然后逆用倍角公式,要仔细体会本题中的解题思路举一反三:【变式1】求值:(1);(2);(3)【答案】(1);(2);(3)【解析】(1)原式=;
4、(2)原式=;(3)原式=类型二:利用二倍角公式求非特殊角的三角函数值例2 求sin10sin30sin50sin70的值【思路点拨】解这类题型有两种方法:方法一:适用,不断地使用二倍角的正弦公式方法二:将正弦题目中的正弦形式全部转化为余弦形式,利用进行化简【答案】【解析】方法一: 方法二:原式【总结升华】本题是二倍角公式应用的经典试题方法一和方法二通过观察角度间的关系,发现其特征(二倍角形式),逆用二倍角的正弦公式,使得问题出现连用二倍角的正弦公式的形式在此过程中还应该看到化简以后的分子分母中的角是互余(补)的关系,从而使最终的结果为实数利用上述思想,我们还可以把问题推广到一般的情形:一般地
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二倍 正弦 余弦 正切 公式 基础 10
限制150内