半导体制造-刻蚀工艺介绍(共25页).doc
《半导体制造-刻蚀工艺介绍(共25页).doc》由会员分享,可在线阅读,更多相关《半导体制造-刻蚀工艺介绍(共25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上半导体制造-刻蚀工艺介绍摘要:自从半导体诞生以来,其很大程度上改变了人类的生产和生活。半导体除了在计算机领域应用之外,还广泛地应用于通信、网络、自动遥控及国防科技领域。此外,在运输(如汽车、轮船、飞机)以及宇航上的应用和作用也日益显著。本文主要介绍半导体制造工艺中的刻蚀工艺。刻蚀就是将光刻胶没有覆盖或保护的部分,以化学反应或物理作用加以去除,以完成将图形转移到硅片表面的目的。随着半导体制造大规模集成电路技术的发展,图形加工线条越来越细,硅片尺寸越来越大,对刻蚀工艺的要求也越来高。应此,学习了解刻蚀工艺的十分必要。关键词:半导体 、 刻蚀 、 硅片Semiconduct
2、or Manufacturing-Etching Process IntroducedAbstract:Since the inception of the semiconductor, which greatly changed the production of human life. In addition to semiconductor applications in the computer field, but also widely used in communications, networking, automatic remote control and national
3、 defense science and technology. In addition, in the transport (such as cars, boats, aircraft), and aerospace applications and on the increasingly significant role. This paper describes the etching process of semiconductor manufacturing process. Etching the photoresist is not covered or protected pa
4、rt of the chemical reactions or physical effects to be removed to complete the pattern transfer to the silicon surface of the goal. As the semiconductor manufacturing large scale integrated circuit technology, more and more detailed graphics processing lines, wafer size increases, the demands on the
5、 etching process increasingly high. In response to this, learning is necessary to understand the etching process.Key Words: Semiconductor、Etching、Wafers目录专心-专注-专业前言如今,半导体在人们日常生活中,可以说无处不在。它除了应用于计算机领域之外,还广泛地应用在通信、消费类电子产品,自动控制以及国防科技领域。半导体集成电路的发展与电子学、数学、物理、化学、机械加工等科技领域紧密联系。半导体制造集成电路的发展也极大地推动了这些领域的发展。这些科
6、技领域的重大发明创造项目也广泛地应用到集成电路技术上。由于,半导体制造过程工艺繁多,其工艺也不完全相同,但其经典工艺还是相同的,所以本文主要对半导体制造过程的刻蚀工艺进行介绍。本文分为4个部分,第一部分简要介绍半导体制造的基本工艺步骤,第二部分为半导体刻蚀工艺介绍,第三部分为刻蚀工艺的去胶,第四部分为刻蚀工艺的终端检测。第1章 半导体制造的基本工艺步骤半导体制造工艺处理过程是最复杂和最苛刻的大规模生产技术。它由数百万个单元处理步骤的复杂序列组成,这些步骤必须近乎无瑕疵地完成。如讨论整个工艺过程步骤是十分困难的,因此本章将讨论如图(1-1)和图(1-2)给出一个简单工艺制造流程,这些流程包括氧化
7、、光刻、刻蚀、离子注入和金属化。图1-1:(a) n型硅晶片原材料;(b)通过干或湿氧化后的硅片;(c)涂敷光刻胶;(d)光刻胶通过掩模板曝光1.1氧化一般来说,SiO2的作用是作为大部分器件结构中绝缘体,或在器件制造过程中作为扩散或离子注入的阻挡层。在p-n结(图1-1)中,SiO2薄膜可用来界定区域。氧化的方法有两种:湿法氧化和干法氧化。湿法氧化的氧化剂是使用氧和水蒸气的混合物。湿氧氧化具有较高氧化速率,可用于生长厚的氧化层。干氧氧化可获得特性良好的Si-SiO2界面,所以通常用来生长器件的氧化物薄膜层。图1-1(a)显示一硅晶片原材料准备进行氧化处理。经过氧化工艺处理后,就会在晶片的整个
8、表面形成一层SiO2。为简化讨论,图1-1(b)只显示硅片表面的氧化层。1.2光刻和刻蚀光刻技术被用于界定p-n结的几何形状。形成SiO2层以后。在晶片表面使用高速旋转机旋涂一层对紫外线敏感的光敏材料薄层,这种光敏材料被称为光刻胶。之后将晶片放在温度为80100的环境下烘焙,目的是去除光刻胶中的溶剂,提高光刻胶黏附力。下一步骤使用紫外线光源,通过具有某种图案的掩模板对涂有光刻胶晶片进行曝光。根据光刻胶的类型,在晶片表面光刻胶涂层的曝光区域将发生相应的化学反应,曝光在光线下的光刻胶涂层将发生聚合反应而难以被刻蚀。聚合物区域在晶片放进显影液后依然存在,而被曝光的区域(在不透光的掩模板区域下)会溶解
9、并清洗掉,如图1-1(d)所示图1-2:(a)显影后的晶片;(b)SiO2去除的晶片;(c)光刻工艺处理后的晶片;(d)扩散或离子注入形成p-n结;(e)光刻工艺处理后的晶片;(f)完整工艺处理后的晶片图1-2(a)显示了显影后的晶片。晶片再次放入120180温度下烘焙20分钟,以增强对称底得黏附力,提高在即将进行的刻蚀工艺处理中的腐蚀能力。然后使用氢氟酸(HF)作为酸刻蚀液来去除没有被光刻胶抗蚀剂所保护的SiO2表面,如图1-2(b)所示。最后使用化学溶剂或等离子体氧化系统剥去光刻胶。图1-2(c)显示光刻胶光刻胶工艺处理以后除去部分氧化层区域的最终结果,此时晶片已经完成了准备工作,可以进行
10、后续的扩散或离子注入的工艺步骤以形成p-n结。1.3扩散和离子注入在扩散方法中,没有被SiO2保护的半导体表面暴露在相反类型的高浓度杂质中,杂质利用固态扩散的方法进入半导体晶格中。在离子注入方法中,掺杂离子被加速到较高的能量,然后注入半导体内部。此时SiO2层作为杂质扩散或离子注入的阻挡层。随后p-n结形成,见图1-2(d)。由于掺入杂质的横向扩散,重掺杂区域要比光刻所开的窗口面积略微大些。1.4金属化扩散或离子注入步骤以后,欧姆接触和互连线在随后的金属化工艺步骤中完成,如图1-2(e)所示。金属薄膜可以使用物理或化学气相淀积的方法形成。光刻的工艺再次被使用,用来界定正面的连接点,如图1-2(
11、f)所示。在晶片背面也要进行相似的金属层和半导体之间的低电阻接触。第2章 刻蚀工艺及方法介绍2.1刻蚀工艺及方法介绍刻蚀就是用光刻的方法制成的光刻胶上的微细图形结构,只能给出集成电路的形貌(又称为潜影),并不是真正的集成电路图形结构。为了获得真正的集成电路结构,还必须将光刻胶上的图形转移到光刻胶下面各层材料上面去。可是就可以担当这一任务:将曝光、显影后的光刻微图形中下层材料的裸露部分去除,即在这层材料上重视与光刻胶相同的微图形。也可以这样说,可是就是将没有被光刻胶覆盖或保护的部分,以化学反应或物理作用加以去除,以完成将图形转移到硅片表面的目的。(如图2-1所示) 图2-1:刻蚀转移图形示意图应
12、该说,图形转移是借助于光刻和刻蚀共同完成的。硅片表面的一层薄膜可以是SiO2、Si3N4、Poly-Si、铝合金(Alloy)、磷硅玻璃等。随着大规模集成电路技术的发展,图形加工的线条也越来越细,硅片尺寸越来越大,因此,对于刻蚀转移图形的重视精度和尺寸控制要求也越来越高。刻蚀可以分为湿法刻蚀和干法刻蚀。前者的主要特点是各向同性刻蚀;后者是利用等离子体来进行各向异性刻蚀,可以严格控制纵向和横向刻蚀。2.2湿法刻蚀湿法刻蚀是腐蚀液进行刻蚀,又称湿法化学腐蚀法。湿法刻蚀在半导体工艺中被广泛地应用,其腐蚀过程与一般化学反应相识。由于是腐蚀样品上没有光刻胶覆盖的部分,因此,理想的刻蚀应当对光刻胶不发生腐
13、蚀或腐蚀速率很慢。刻蚀不同材料所选择的腐蚀液是不同的,所用的光刻胶对各种腐蚀剂都具有较强的适应性,在生产上往往用光刻胶对腐蚀剂的抗腐蚀能力作为衡量光刻胶质量的一个重要标志。湿法腐蚀尤其适合将多晶硅、氧化物、氮化物、金属与-族化合物等作为整片(即覆盖整个晶片表面)的腐蚀。湿法刻蚀的机制涉及了三个核心步骤,如图2-2所示。反应物由于扩散传递到反应表面,化学反应在表面发生,且来自于表面的产物由扩散清除。刻蚀剂溶液的扰动和温度将影响刻蚀速率,该速率指单位时间由由刻蚀去除的薄膜量。在集成电路处理时,多数湿法刻蚀是如下进行的:通过将晶圆片侵在化学溶剂中或通过将溶剂液喷洒到晶圆片上。对于浸泡刻蚀,圆片是浸在
14、刻蚀溶剂液中的,且常常需要机械扰动,为的是确保刻蚀的统一性和一致的刻蚀速率。喷洒蚀刻已经逐渐替代了浸泡刻蚀,因为前者通过持续地将新鲜刻蚀剂喷洒到圆片表面,这样便极大地增加了刻蚀速和一致性。 图2-2:湿法化学刻蚀基本机理在半导体生产线上,高度一致的刻蚀速率是非常重要的。在一圆片之上,从圆片到圆片、从轮次到轮次以及对于功能尺寸和模式密度的任何变化,刻蚀速率必须是统一的。刻蚀速率的一致性由下式给定: (最大刻蚀速率最小刻蚀速率)刻蚀速率的一致性(%)= 100% 最大刻蚀速率+最小刻蚀速率2.2.1二氧化硅的刻蚀二氧化硅的湿法刻蚀通常利用稀释的氢氟酸溶液,其中也可以加入氟化铵(NH4F)。加入氟化
15、铵是提供缓冲的HF溶液(BHF),又称作缓冲氧化层刻蚀(buffered-oxide-etch,BOE)。HF加入NH4F可以控制酸碱值,并且可以补充氟离子的缺乏,这样可以维持稳定的刻蚀效果。二氧化硅的整体反应式:SiO2+6HF H2SiF6+2H2OSiO2的刻蚀速率由腐蚀溶液,腐蚀剂的浓度、搅动与温度决定。另外,密度、表面多孔度、微结构与氧化物内含的杂质皆会影响刻蚀的速率。腐蚀液温度一定时,SiO2的腐蚀速率取决于腐蚀液的配比及SiO2的掺杂程度,掺杂磷浓度越高,腐蚀速率越快,掺硼浓度越高,腐蚀速率越慢。SiO2对腐蚀的温度十分敏感。温度越高,腐蚀越高,腐蚀速率越快。因此要严格控制腐蚀液
16、的温度。腐蚀液搅动对腐蚀速率有一定的影响,一般讲,硅片与腐蚀液的相对运动可以提高腐蚀速率和腐蚀均匀性。常见的方法有对流、鼓泡、机械振动(超声波)和喷雾等。喷雾腐蚀速率最快、均匀性好、侧向腐蚀最小,是一种很好的湿法刻蚀方法。超声波腐蚀易引起浮胶、侧向腐蚀严重,因此少用。在腐蚀刚开始使用时,F量多,但使用一段时间后,F量逐渐减少,腐蚀效果明显消弱。为了提高F浓度,腐蚀液中加入少量的NH4F,它能及时补充F。因此,有人称它为缓冲剂。为了保证重复性好,腐蚀液要每天更换。腐蚀液的pH值、腐蚀液的温度、腐蚀时间之间关系要严格控制。2.2.2硅的刻蚀在TTL(晶体管晶体管逻辑)电路有一种介质隔离技术,那么这
17、种隔离是如何形成的?一般用HF和HNO3作为腐蚀液刻出槽来。其腐蚀速度与腐蚀液中两种酸的比例关系很大。腐蚀有两种方法进行。1)先在硅表面上生长一层较厚且致密的SiO2层,然后利用光刻和刻蚀的方法把需要的刻槽上的SiO2腐蚀掉,这样就裸露出硅来,然后再放入配制好的腐蚀液中(HNO3:HF=8:1(体积比)。这种腐蚀速度十分快,经过23min,硅就被腐蚀出1020m深槽。腐蚀后去除表面SiO2层,就露出硅片表面,然后按照工艺重新生长SiO2作介质隔离之用或其他加工。在腐蚀液中加入少量冰醋酸起到缓冲作用。硝酸是强氧化剂,它将单质的硅氧化成SiO2,其反应如下:3Si+4HNO3=3SiO2+2H2O
18、+4NO生成的SiO2不溶于水也不溶于HNO3,但能与HF生成可溶性络合物,这样硅就被腐蚀掉了。2) 用金属铝作掩护膜,由于Al对HNO3和HF的抗蚀能力较强,可以在硅片表面用蒸发或者溅射方法生长一Al层,然后用光刻和刻蚀方法把槽部分的Al层去掉而裸露出硅,然后再把硅片进入腐蚀液中腐蚀硅。以上两种方法多都可以使用,但在使用时会发出大量热量来,如不注意散热或降温,其腐蚀效果不好,因此腐蚀时都放在冰水中进行。2.2.3金属铝的刻蚀在半导体干法刻蚀工艺中,根据待刻蚀材料的不同,可分为金属刻蚀、介质刻蚀和硅刻蚀。金属刻蚀又可以分为金属铝刻蚀、金属钨刻蚀和氮化钛刻蚀等。目前,金属铝作为连线材料,仍然广泛
19、用于DRAM和flash等存储器,以及0.13um 以上的逻辑产品中。金属铝刻蚀通常用到以下气体:Cl2、BCl3、Ar、 N2、CHF3和C2H4等。Cl2作为主要的刻蚀气体,与铝发生化学反应,生成的可挥发的副产物AlCl3被气流带出反应腔。BCl3一方面提供BCl3+,垂直轰击硅片表面,达到各向异性的刻蚀。另一方面,由于铝表面极易氧化成氧化铝,这层自生氧化铝在刻蚀的初期阻隔了Cl2和铝的接触,阻碍了刻蚀的进一步进行。添加BCl3 则利于将这层氧化层还原(如方程式1),促进刻蚀过程的继续进行。 Al2O3 + 3BCl3 2AlCl3 + 3BOCl (1)* B- l% t, t: K%
20、D0 G 8 X( BAr电离生成Ar,主要是对硅片表面提供物理性的垂直轰击。 N2、CHF3和C2H4是主要的钝化气体,N2与金属侧壁氮化产生的AlxNy,CHF3和C2H4与光刻胶反应生成的聚合物会沉积在金属侧壁,形成阻止进一步反应的钝化层。一般来说,反应腔的工艺压力控制在614毫托。压力越高,在反应腔中的Cl2浓度越高,刻蚀速率越快。压力越低,分子和离子的碰撞越少,平均自由程增加,离子轰击图形底部的能力增强,这样刻蚀反应速率不会降低甚至于停止于图形的底部。9 i4 8 Z7 U e( E 目前金属刻蚀机台广泛采用双射频功率源设计,如应用材料公司DPS(decouple plasma so
21、urce)金属刻蚀机台。偏置功率用来加速正离子,提供垂直的物理轰击,源功率用来提高反应腔体内的等离子体的浓度。这种双功率的设计可以实现对离子体的能量和浓度的独立控制,扩大了刻蚀工艺的工艺窗口和性能。9 X% Q7 p. o9 g E6 v4 r在金属铝的上下通常会淀积金属钛或氮化钛,形成氮化钛/铝/氮化钛/钛的结构。用来刻蚀铝的Cl2与钛反应生成挥发性相对较低的TiCl4,刻蚀氮化钛的速率只有刻蚀铝的1/31/4,因此减少Cl2或是增加BCl3和偏置功率,都有利于提高氮化钛和钛的刻蚀速率。% v, : 2 P4 g3 |+ V在金属铝中通常会加入少量的硅和铜来提高电子器件的可靠性。硅和Cl反应
22、生成挥发性的SiCl4,很容易被带出反应腔。铜与Cl反应生成的CuCl2挥发性却不高,因此需要加大物理性的离子轰击把铜原子去掉,一般可以通过加大Ar和增加偏置功率来实现。 I H( f7 w$ M C. j& j! S当铝刻蚀完成之后,硅片表面、图形侧壁和光刻胶表面残留的Cl,会和铝反应生成AlCl3, 继而与空气中的水分发生自循环反应(如方程式2),造成对铝的严重侵蚀(corrosion)。因此,在刻蚀工艺完成后,一般会用H2O和O2的等离子体把氯和光刻胶去除, 并且在铝表面形成氧化铝来保护铝。0 * |9 Z( f! s9 * W 2.2.4其他湿法刻蚀1.氮化硅和多晶硅的刻蚀氮化硅薄膜可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体 制造 刻蚀 工艺 介绍 25
限制150内