新一代电池-固体电池(共34页).doc
《新一代电池-固体电池(共34页).doc》由会员分享,可在线阅读,更多相关《新一代电池-固体电池(共34页).doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上掌握新一代电池的最新动向!日经电子将于2011年2月23日举办“新一代电池开发最前线汽车、家庭及社会由此改变”研讨会(东京都市中心酒店(Toshi Center Hotel)。在锂离子电池方面,虽然迄今这方面的研究在便携产品市场扩大的背景下取得了进展,但今后面向电动汽车及插电式混合动力车等电动车辆、以及可实现电力网稳定化的蓄电系统等广泛领域的研发将必不可少。因此,有必要让更多的技术人员深入了解新一代电池的知识,并致力于提高电池业界的技术水平,以便早日实现新一代电池的需求扩大。 此次研讨会将探讨以锂空气电池、全固体电池及有机电池为代表的新一代锂离子电池的电极材料。锂空气
2、电池及全固体电池方面,将请丰田公司分别讲解。作为开发革新性电池的基础研究部门,丰田于2008年6月新设了“电池研究部”,正在积极推进锂空气电池、全固体电池及锂离子电池新材料等新一代电池的研究。 锂空气电池以大气中的氧气为正极,与目前的锂离子电池相比,可将能量密度在理论值上提高到以前的15倍以上,所以作为“终极”电池备受关注。然而,锂空气电池作为充电电池使用时,存在着作为反应中间体的活性氧会与电解液发生反应的问题。针对这一问题,丰田对锂空气电池的反应机构进行了彻底分析,将锂空气电池制成可充放电的充电电池。有关这方面的举措,将请丰田电池研究部研究2组组长锦织英孝进行介绍。 在全固体电池方面,由于其
3、电解质不采用液体电解液,而是采用固体电解质,因此,作为具备可提高安全性及耐久性、以及可通过在电池单元内进行串联以提高电压等前所未有的特性的电池,受到了极大关注。就这种全固体电池方面的领先举措,将请丰田电池研究部研究1组组长川本浩二进行讲解,还将请在硫化物类玻璃陶瓷电解质领域进行先端研究的日本大阪府立大学研究生院工程学研究科教授辰巳砂昌弘发表演讲(参阅)。 可提高正极容量的有机电池以及固溶体类正极材料 采用理论容量最大达到近1000mAh/g的有机化合物作为正极材料的有机电池,具有因不使用重金属而重量较轻、且资源限制较小的特点,目前正以2020年正式销售为目标推进研发。有关其现状及今后的的展望,
4、将请村田制作所的佐藤正春发表演讲。 另一方面,固溶体类正极材料(Li2MnO3LiMO2(M:Co, Ni,Mn等金属)由于具备超过传统锂离子电池正极材料近2倍的280mAh/g的比容量,因而,作为可提高现有锂离子电池容量的正极材料而受到关注。 在2010年11月举办的“第51届电池讨论会”上,日产汽车、日本产业技术综合研究所、田中化学研究所、户田工业及三洋电机等厂商相继进行了固溶体类正极材料的信息发布。美国通用汽车(General Motors)、日本旭化成及旭硝子等厂商也于2011年1月底宣布,将向生产固溶体类正极材料的美国Envia Systems提供总额为1700万美元(约合14亿10
5、00万日元)的出资,成为人们关注的话题。 有关固溶体类正极材料产生高容量的原理、以及固溶体类正极材料的特性及今后的发展前景,将请日本产业技术综合研究所泛在能源(Ubiquitous Energy)研究部门蓄电设备研究小组主任研究员田渕光春进行讲解(参阅)。 此外,作为机械化学(Mechanochemical)处理的一种,在超离心力场中采用溶胶-凝胶(Sol-gel)法,可使数nm级的粒子化材料及碳材料以高分散方式混合的“纳米混合技术”方面,将请东京农工大学研究生院工程学研究院应用化学部门教授直井胜彦发表演讲。 作为采用该技术的事例,日本Chemi-Con计划于2011年春季样品供货负极采用钛酸
6、锂与碳纳米纤维复合材料的锂离子电容器。纳米混合技术在用作锂离子电池的电极材料时都非常有效,无论是采用锡(Sn)还是磷酸铁锂(LiFePO4)作为正负极,性能都成功地得到了提高(参阅)。(记者:狩集 浩志)“全固体电池很可能会成为终极电池”全固体电池由于电解质使用固体电解质而非液体的电解液,因此不仅能够提高安全性,而且还可通过在电池单元内进行串联层叠来实现高电压化,作为新一代电池备受关注。日本大阪府立大学的辰巳砂研究室正在利用锂离子传导率与电解液相当、达到3510-3S/cm的硫化物类玻璃固体电解质,致力于全固体电池的研发。日前,记者采访了在硫化物类固体电解质的研究上一直处于领先位置的大阪府立大
7、学大学院工学研究科教授辰巳砂昌弘。(采访人:日经电子狩集 浩志) 大阪府立大学大学院工学研究科教授辰巳砂昌弘 请谈一下在全固体电池方面的举措。 我原来并不是电池方面的专家。由于在玻璃离子传导研究中对锂离子传导性玻璃产生了兴趣,因此想向世人推出该玻璃类固体电解质。因为通过使用无机固体电解质,有可能造出前所未有的完美电池。 就锂离子充电电池而言,如果只有锂离子移动,而其它离子不移动的话的确是最理想的状态。而无机类固体电解质就能够做到只使锂离子移动。最近的成果实现了传导率与电解液相当、达到110-2S/cm的固体电解质。而且在制成电池后,可在电解质中只移动锂离子,承担全部电流,迁移率可以达到1。显示
8、出了超过迁移率较低的电解液类电解质的出色性能。 而且,全固体电池因是固体而不易燃烧的优点也很受关注,锂离子以外的其他离子不移动的特性为安全性及耐久性做出了巨大贡献。锂离子以外的其他离子不移动的话便可防止阴离子移动导致的次生反应,有助于提高安全性及耐久性。这样一来无机类固体电解质便具有成为终极电池的可能性。 业内对全固体电池的认识是否在逐渐改变? 固体电解质的锂离子传导率提高到了与电解液相当的水平,而且日本物质及材料研究机构的高田和典还发现,通过对活性物质进行涂膜处理,可大幅降低与固体电解质之间的界面阻力,这些情况都表明,全固体电池的实用化之路已非常接近。 最近,学会等对固体电池的研究报告有所增
9、加,还设立有有关固体电池的分科讨论会,固体电池获得了“公民权”,对该领域的研究人员来说这是非常高兴的事。而且,企业对固体电池的开发也在近2、3年里发生了巨大变化,逐渐使之从一直将其视为基础研究的定位中走出来。 听说您的研究室在致力于硫化物类固体电解质的研究。 硫化物类固体电解质在常温下具有超过10-3S/cm的离子传导率,作为电解质的话具备良好的特性。另外,与氧化物相比,还具有可在常温下均匀形成活性物质与硫化特类固体电解质间的界面,降低界面阻力的特点。虽然其原理还有待科学验证,但估计是因为硫化物是比较软的物质。 离子传导率高,可轻松形成与活性物质间的界面,可以说这两点对全固体电池的电解质来说是
10、非常重要的要素。另外,在高容量的新一代电池的研究上采用比容量高的硫磺(S)及硫化锂(Li2S)时,硫化物类固体电解质也具有很好的亲和性。 今后将开展什么研究? 由于是大学,因此打算开展着眼于更前沿的基础研究。尤其是在界面如何形成方面,将进行更为详细的研究。其中,计划对活性物质与电解质接触时自己形成良好界面的材料设计展开研究。在活性物质方面,准备致力于可瞄准高容量化的硫磺及硫化锂等硫化物类材料的研究。使用硫化物类固体电解质的全固体电池是日本绝对领先的领域,因此希望今后继续保持领先地位。看好全固体电池的发展潜力在2010年5月17日出版的日经电子上刊登了“新一代电池走近全固体时代”一文,报道了采用
11、固体电解质取代有机电解液的全固体电池的动向。关注全固体电池,是因为其较高的安全性以及较宽的电位窗,有望大大推动电池的发展。 另外,全固体电池或许将大大改变包括制造方法在内的已有概念。由于不使用液体,因而简化外壳;还可通过卷对卷方式制造大面积的电池单元。此外,通过层叠多个电极、并使其在电池单元内串联,可制造出12V及24V的大电压电池单元等前所未有的电池。 固体电解质可大体分为高分子类及无机物类两类。高分子类固体电解质虽然在低温特性方面还存在问题,但由于其具有便于通过卷对卷方式大量生产的优点,因此,出现了力争在面向定置设备的蓄电用途方面实用化的趋势。例如,日本电力中央研究所正在开发用于电热水器“
12、EcoCute”中的全固体电池。该研究所称,希望通过在全固体电池中蓄电,将300400L的储水箱的体积减小到必要的最小限度,使其可设置在公寓等集体住宅中。据介绍,在尚待提高的低温特性方面,设想在60的温度下工作,目前正在探讨通过在储水箱中设置全固体电池来保持温度。 无机物类固体电解质方面,数字显示达到3510-3S/cm这一与有机电解液相当的离子传导率的硫化物类固体电解质(Li2S-P2S5)将面世,相关开发进行得如火如荼。采用硫化物类电解质的研究方面,日本出光兴产、日本大阪府立大学、三星横浜研究所、日本产业技术综合研究所、东京工业大学、丰田以及日立造船等均在学会上发表了研究成果。出光兴产展出
13、了A6b大小的层叠(Laminate)型电池单元的试制品,力争2012年开始商业化生产。 日经电子将与日经汽车技术联合举办电动车辆最新动向研讨会“AUTOMOTIVE TECHNOLOGY DAYS 2010 summer ”(2010年5月30日6月1日,目黑雅叙园)。专业分组会中,设置了可了解车载用电池最新动向的“B-1 电池及充电技术I”“B-2 电池及充电技术II”。其中,在将于6月1日举办的“B-2 电池及充电技术II”上,计划由丰田及三星横浜研究所分别以“对革新型充电电池的期望”和“全固体锂电池的实用化研究”为题,发表涉及全固体电池的演讲。 具体将由丰田介绍锂离子充电电池新材料、全
14、固体电池以及锂空气电池等的研究事例。三星横浜研究所的采用Ni(镍)类正极材料硫化物类固体电解质的开发品,取得了接近实用水平的输出功率特性、与电解液类固体电解质相同乃至更高的寿命等性能。三星横浜研究所将介绍其开发举措。(记者:狩集 浩志)新一代电池走向全固态电动车与定置式大尺寸电池的需求推动开发(上)以固态电解质取代传统液体有机电解液的固态电池正吸引越来越多的关注。电动车(EV)和定置式蓄电用途的大型电池的应用需求激增,可期待安全与长寿命的固态电池正在成为一个候选产品。在追求高容量化的新一代电池方面,固态电解质扮演角色的重要性也在日益提高。但目前固态电解质仍然存有不少问题。本文追寻着开发全固态电
15、池的企业、大学和研究机构的脚步,探索固态电池通向实用化之路。 “只用固体材料即可实现电池功能的认识终于被人们普遍接受”日本东京工业大学研究生院综合理工学研究科物质电子化学专业教授菅野了次感慨道。 采用固态电解质的的大容量新一代电池,即所谓“全固态电池”近来开始受到瞩目。这是由于其在能量密度提高的同时,还可望确保安全性和实现长寿命化(图1)。 图1 发展方向是固态电解质电动车和定置式用大型锂离子充电电池而言,保证安全是最重要的。并且,希望长寿命化的呼声也很高,许多电池使用者希望“锂离子充电电池采用固体电解质”。而在便携设备市场上,业者们似在考虑使用固态电解质来开发能量密度超过300Wh/kg的后
16、锂离子充电电池。采用有机电解液的传统锂离子充电电池,因有过度充电、内部短路等异常时可能导致电解液发热,有自燃或甚至爆炸的危险。而将有机电解液代之以固态电解质的全固态电池,其安全性可大幅提高。并且,因在理想状态下,固态时锂的扩散速度(离子传导率)较液体电解液时高,理论上认为其可实现更高的输出。 并且,固态电池包括其制造方式在内,可能会实现突破现有电池概念的特性。例如,因不必封入液体,则电池外装可以简化,从而能以卷对卷(roll-to-roll)方式制造大面积单元。进一步,还可将数层电极层积,并在单元内串联,制作12V或24V的大电压单元等,使此前不可能的电池得以实现。 实际上,电池相关学会也称,
17、近年来关于固态电池的论文数目在增加。其中最有兴趣的积极参与者是丰田汽车公司。近1、2年,其以将来适用于车载的电池为目标的论文大幅增加。 对固态电池抱有强烈兴趣的,并非只有丰田公司一家。出光兴产(Idemitsu Kosan)在展示会上以2012年实用化为目标,展示了约A6大小的固态电池,日本中央电力研究所(Central Research Institute of Electric Power Industry,CRIEPI)则在开发以住宅储能为目的的固态电池。并且,电池制造厂商也加入这股热潮:日本三星横滨研究院(Samsung Yokohama Research Institute)与韩国的
18、三星电子已经开发出一种充放电周期寿命和输出特性都接近商业水准的固态电池。从电池的制造方到利用方的许多企业都在致力于固体电池的开发。 站在十字路口的锂离子充电电池固态电池的开发并非始于今日。迄今已有过许多小型固态电池的试制品,并已在心脏起搏器(pacemaker)上实现了商业化。只是此前的开发一直以非常小的薄型电池为中心。然而,近来车载及定置蓄电用途采用固体大型电池的可能性一直在提高。 所有这一切的背景是,电动车和定置式蓄电用大型电池,而非迄今为止的主流便携设备用的小型电池的需求激增,因此要求电池特性的改变,使得研发方向发生重大改变。 特别是对电池的安全性与使用寿命,有比现有的锂离子充电电池更加
19、严格的要求。其中,安全性自不待言,固态电池有明显优势;而在延长使用寿命方面,“固态电池的周期寿命特性原本就优异”,日本大坂府立大学(Osaka Prefecture University)研究生院工学研究科教授辰巳砂昌弘说道。 耐高电压 除了比目前的锂离子充电电池更安全与使用寿命更长,提高能量密度也是固态电池的一个开发主题。使固态电池具有可增加能量密度特征的理由之一是固体电解质电位窗(potential window*)的宽广度。而传统的有机电解液,当电池电压接近4V时电解液就开始分解,因此很难提高电池的电压上限。 *电位窗(Potential window):由溶剂和盐组成的电解液不出现氧化
20、还原反应的电压范围。取决于溶剂、盐与电极材料。 目前,为提高容量,锂离子充电电池的负极正准备变更为电流容能高的硅等材料(注1)。与负极相应的高容量正极材料虽同样重要,但尚未发现有望支持更高电流容量的正极材料。因此,在正极材料方面,将利用电流容量不变,而以高电压来增加能量密度的所谓“5V”正极材料作为了目标。 注1:日立麦克赛尔(Hitachi Maxell),2010年6月推出智能手机用硅基负极锂离子充电电池。此外,松下公司则表明将在2012年度开始量产这种电池。 但即使采用5V电压型正极材料,传统的有机电解液还是会分解,电池的电压还是不能提高。而使用具有更宽广电位窗的固态电解质,便可令5V正
21、极成为可行的解答(注2)。 注2:因固态电解质是固体,当电极材料与电解质间的界面发生反应时,其进一步反应难以进行,比有机电解液难分解,因而电位窗高。 并且,固态电解质对作为锂聚合物充电电池而受到关注的硫化锂(Li-S)*与锂空气(Li-air)*电池等的下一代电池的实现,似将发挥重要的作用。硫化锂电池使用硫(S)类材料为正极,若使用有机电解液,硫会溶解于其中。如能利用固态电解质,则这个问题就不复存在。 *硫化锂电池(Li-S battery):正极为硫,负极为金属锂的充电电池。因硫的理论容量高达1672mAh/g,即硫化锂电池的理论能量密度可为约2600Wh/kg。 *锂空气电池:因利用大气中
22、的氧气为正极,所以单位质量及体积的能量密度可得到飞跃性提升,所以作为终极电池(ultimate battery)在研究。但有观点指出,其空气极的还原反应极具难度。 被视为“终极电池”的锂空气电池,正极上需要能使空气通过的结构。因此,固态而非液态电解质的采用很可能会促成电极结构的简化。(未完待续 记者:狩集 浩志)新一代电池走向全固态电动车与定置式大尺寸电池的需求推动开发(中)离子导电性高的无机电解质 固态电池用固态电解质的开发可大致分为两类,即离子电导率高、使用寿命长的无机电解质与生产效率高的高分子电解质(图2)。无机电解质可进一步分成为硫化物和氧化物两类。目前进展最快的是硫化物类固态电解质,
23、不断有离子电导率达10-3S/cm,与电解液性能相当的材料开发出来。 图2 固态电池的长处和短处固态电池的电解质,可大致分为无机物和高分子两类。无机物类以较高的离子导电为特征。高分子类虽更容易制造,但存在有低温特性的问题。具有代表性的例子为Li2S-P2S5类与硫化结晶锂超离子导体(thio-LISICON)类电解质。Li2S-P2S5类材料方面,已开发出了离子电导率高达3510-3S/cm的材料,使用这种材料的固态电池的试制品也纷纷出笼。而与硫化结晶锂超离子导体结构相似的材料具有较高的离子电导率已是众所周知,其中最适合电池的材料也在探索之中。 硫化物固态电解质的另一个优点,是因为使用了与下一
24、代正极材料相同的硫(S)化物,造成优异的匹配。如果能开发出离子电导率达约10-2S/cm的固态电解质,则“会加速下一代电池的研究”,东京工业大学的菅野表示。 然而,还有需要解决的问题。首先是所有固态电解质共同的问题:电极活性物质和固态电解质间界面的高电阻。且硫化物和水发生反应会产生硫化氢(H2S),这意味着从生产电解质到组装电池的整个制程都需要对湿度的控制措施。 而氧化物类方面,目前已有离子导电率达到低于硫化物的10-3S/cm的氧化物类电解质面世。只是,具备这种特性的氧化物类为结晶构造,存在其晶界电阻(grain boundary resistance)会降低性能的问题(注3)。即使如此,因
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新一代 电池 固体 34
限制150内