勾股定理全章题型总结(共8页).doc
《勾股定理全章题型总结(共8页).doc》由会员分享,可在线阅读,更多相关《勾股定理全章题型总结(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上勾股定理全章知识点及典型题归类一基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在中,则,)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2c2,那么这个三角形是直角三角形。要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确
2、定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2a2+b2,则ABC是以C为直角的直角三角形(若c2a2+b2,则ABC是以C为钝角的钝角三角形;若c2a2+b2,则ABC为锐角三角形)。(定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。4:互逆命题的概念如果一个命题的题设
3、和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理6:勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;等用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)二、典型题归类类型一:等面积法求高【例题】如图,ABC中,ACB=900
4、,AC=7,BC=24,CDAB于D。(1)求AB的长;(2)求CD的长。类型二:面积问题ABCD7cmmmmmmmm【例题】如下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为_cm2。【练1】如上右图,每个小方格都是边长为1的正方形,(1)求图中格点四边形ABCD的面积和周长。(2)求ADC的度数【练2】如图,四边形是正方形,且=3,=4,阴影部分的面积是_.【练3】如图字母B所代表的正方形的面积是 类型三:距离最短问题小河AB东北牧童小屋【例题】如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8
5、km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?【练1】如图,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程 【练2】如图,边长为1的立方体中,一只蚂蚁从A顶点出发沿着立方体的外表面爬到B顶点的最短路程是()A、3B、 C、D、1【练3】如图,长方体的长为15cm,宽为10cm,高 为20cm,点B到点C的距离为5cm,一只蚂蚁如果要沿着长方体的表面从A点爬到B点,需要爬行的最短距离是多少?BCA201510类型四:判断三角形的形状【例题】如果ABC的三边分别为a、b、c,
6、且满足a2+b2+c2+50=6a+8b+10c,判断ABC的形状。【练1】已知ABC的三边分别为m2n2,2mn,m2+n2(m,n为正整数,且mn),判断ABC是否为直角三角形.【练2】.已知a,b,c为ABC三边,且满足(a2b2)(a2+b2c2)0,则它的形状为()三角形A.直角B.等腰 C.等腰直角D.等腰或直角【练3】三角形的三边长为,则这个三角形是( ) 三角形(A)等边(B)钝角(C) 直角(D)锐角 类型五:直接考查勾股定理【例题】在RtABC中,C=90(1)已知a=6, c=10,求b;(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.。类型六:构造
7、应用勾股定理 【例题】如图,已知:在中,. 求:BC的长. 练:ABC中,AB=AC=20,BC=32,D是BC上一点,且ADAC,求BD的长类型七:利用勾股定理作长为的线段例1在数轴上表示的点。作法:如图所示在数轴上找到A点,使OA=3,作ACOA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为。【练习】在数轴上表示的点。类型八:勾股定理及其逆定理的一般用法【例题】若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。【练习1】等边三角形的边长为2,求它的面积。2、已知一直角三角形的斜边长是2,周长是2+,求这个三角形的面积类型九:生活问题【例题】如下左图,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 题型 总结
限制150内