《立体几何垂直证明-教师(共11页).doc》由会员分享,可在线阅读,更多相关《立体几何垂直证明-教师(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上立体几何垂直证明题常见模型及方法垂直转化:线线垂直 线面垂直 面面垂直; 基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)等腰(等边)三角形中的中线 菱形(正方形)的对角线互相垂直 勾股定理中的三角形1:1:2 的直角梯形中 利用相似或全等证明直角。例:在正方体中,O为底面ABCD的中心,E为,求证:(2) 异面垂直 (利用线面垂直来证明,高考中的意图)例1 在正四面体ABCD中,求证变式1 如图,在四棱锥中,底面是矩形,已知证明:;变式2如图,在三棱锥中,是等边三角形,PAC=PBC=
2、90 证明:ABPC类型二:线面垂直证明 方法 利用线面垂直的判断定理 例2:在正方体中,O为底面ABCD的中心,E为,求证:变式1:在正方体中,,求证:DACOBE变式2:如图:直三棱柱ABCA1B1C1中,AC=BC=AA1=2,ACB=90.E为BB1的中点,D点在AB上且DE=.求证:CD平面A1ABB1;变式3:如图,在四面体ABCD中,O、E分别是BD、BC的中点,求证:平面BCD;变式4 如图,在底面为直角梯形的四棱锥中,平面,求证:平面 利用面面垂直的性质定理例3:在三棱锥P-ABC中,,,。方法点拨:此种情形,条件中含有面面垂直。ABCDEF变式1, 在四棱锥,底面ABCD是
3、正方形,侧面PAB是等腰三角形,且,求证:类型3:面面垂直的证明。(本质上是证明线面垂直) 例1 如图,已知平面,平面,为等边三角形,为的中点.(1) 求证:平面;(2) 求证:平面平面;例2 如图,在四棱锥中,底面,是的中点(1) 证明; (2)证明平面;变式1已知直四棱柱ABCDABCD的底面是菱形,E、F分别是棱CC与BB上的点,且EC=BC=2FB=2(1)求证:平面AEF平面AACC;练习:1.设M表示平面,a、b表示直线,给出下列四个命题:bMbM.其中正确的命题是 ( )A. B. C. D.2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于
4、这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把ADE、CDF和BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体PDEF中,必有 ( )第3题图A.DP平面PEF B.DM平面PEF C.PM平面DEF D.PF平面DEF4.设a、b是异面直线,下列命题正确的是 ( )A.过不在a、b上的一点P一定可以作一条直线和a、b
5、都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行5.如果直线l,m与平面,满足:l=,l,m和m,那么必有 ( )A.且lm B.且m C.m且lm D.且6.AB是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若BC=1,AC=2,PC=1,则P到AB的距离为 ( )A.1 B.2 C. D.7.有三个命题:垂直于同一个平面的两条直线平行;过平面的一条斜线l有且仅有一个平面与垂直;异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为 ( )A.0 B.1 C.2 D.38.d是异面直线
6、a、b的公垂线,平面、满足a,b,则下面正确的结论是 ( )A.与必相交且交线md或m与d重合B.与必相交且交线md但m与d不重合C.与必相交且交线m与d一定不平行D.与不一定相交9.设l、m为直线,为平面,且l,给出下列命题 若m,则ml;若ml,则m;若m,则ml;若ml,则m,其中真命题的序号是 ( )A. B. C. D.10.已知直线l平面,直线m平面,给出下列四个命题:若,则lm;若,则lm;若lm,则;若lm,则.其中正确的命题是 ( )A.与 B.与 C.与 D.与二、能力提高14.如图所示,三棱锥V-ABC中,AH侧面VBC,且H是VBC的垂心,BE是VC边上的高.第14题图
7、(1)求证:VCAB;(2)若二面角EABC的大小为30,求VC与平面ABC所成角的大小.15.如图所示,PA矩形ABCD所在平面,M、N分别是AB、PC的中点.第15题图(1)求证:MN平面PAD. (2)求证:MNCD.(3)若PDA45,求证:MN平面PCD.16.如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,BAD60,AB4,AD2,侧棱PB,PD.(1)求证:BD平面PAD. (2)若PD与底面ABCD成60的角,试求二面角PBCA的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,ACB=90,BAC=30,BC=1,AA1=,M是CC1的中点,求证:AB1A
8、1M18.如图所示,正方体ABCDABCD的棱长为a,M是AD的中点,N是BD上一点,且DNNB12,MC与BD交于P.(1)求证:NP平面ABCD. 第18题图(2)求平面PNC与平面CCDD所成的角.(3)求点C到平面DMB的距离.空间中的计算 基础技能篇类型一:点到面的距离方法1:直接法把点在面上的射影查出来,然后在直角三角形中计算例1:在正四面体ABCD中,边长为a,求点A到面BCD的距离。 变式1 在正四棱锥V-ABCD中,底面ABCD边长为a,侧棱长为b.求顶点V到底面ABCD的距离。变式2在正四棱锥V-ABCD中,底面ABCD边长为a,侧棱长为b.求顶点A到底面VCD的距离。方法
9、2:等体积法求距离-在同一个三棱锥中利用体积不变原理,通过转换不同的底和高来达到目的。例2 已知在三棱锥VABC中,VA,VB,VC两两垂直,VA=VB=3,VC=4,求点V到面ABC的距离。变式1:如图所示的多面体是由底面为的长方体被截面所截而得到的,其中 (1)求的长;(2)求点到平面的距离 _A_B_D_C_O变式2 如图,在四棱锥中,底面ABCD是四边长为1的菱形,, 面, ,求点B到平面OCD的距离变式3在正四面体ABCD中,边长为a,求它的内切求的半径。类型二:其它种类的距离的计算(点到线,点到点 )例3 如图,在四棱锥中,底面ABCD是四边长为1的菱形,, 面, ,M为OC的中点
10、,求AM和点A到直线OC的距离_A_B_D_C_O习题:1正三棱锥P-ABC高为2,侧棱与底面所成角为,则点 到侧面的距离是A B C6 D2如图,已知正三棱柱的底面边长为1,高为8,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为A10 B20 C30 D40二、填空题:3太阳光照射高为m的竹竿时,它在水平地面上的射影为1m,同时,照射地面上一圆球时,如图所示,其影子的长度AB等于cm,则该球的体积为_4若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为_主视图俯视图2左视图三、解答题:5已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边
11、上的中点,N是侧棱CC1上的点,且CN2C1N求点B1到平面AMN的距离6一个多面体的直观图及三视图如图所示:(其中M、N分别是AF、BC的中点).(1)求证:MN平面CDEF; (2)求多面体ACDEF的体积7一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.(1)求证:(2)当FG=GD时,在棱AD上确定一点P,使得GP/平面FMC,并给出证明SBCFDAEO8如图,已知正四棱锥,设为的中点,为的中点,为边上的点(1)求证:平面;(2)试确定点的位置,使得平面底面BAACAC1AB1AA1AMN主视图左视图俯视图9一个多面体的直观图、主视图、左视图、
12、俯视图如图所示,、分别为、的中点(1) 求证:平面;(2) 求证:平面(3)求点A到面ANM的距离10正四棱柱ABCDA1B1C1D1中,底面边长为2,侧棱长为4. E,F分别为棱AB,BC的中点,EFBD=G.()求证:平面B1EF平面BDD1B1;()求点D1到平面B1EF的距离d;()求三棱锥B1EFD1的体积V.图92111.在三棱锥SABC中,SAB=SAC=ACB=90,且AC=BC=5,SB=5.(如图921)()证明:SCBC;()求侧面SBC与底面ABC所成二面角的大小;()求三棱锥的体积VSABC.第4课线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂
13、直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DPPE,DPPF,PEPF.4.D 过a上任一点作直线bb,则a,b确定的平面与直线b平行.5.A依题意,m且m,则必有,又因为l=则有l,而m则lm,故选A.6.D过P作PDAB于D,连CD,则CDAB,AB=,PD=.7.D 由定理及性质知三个命题均正确.8.A 显然与不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ,l,lm11.cm2 设正三角ABC的边长为a.AC2=a2+1,BC2=a2+1,AB=a2+4,又AC2+BC2=AB2,a2=2SA
14、BC=cm212.在直四棱柱A1B1C1D1ABCD中当底面四边形ABCD满足条件ACBD(或任何能推导出这个条件的其它条件,例如ABCD是正方形,菱形等)时,有A1CB1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VCVA,VCAB. 由VCVA,VCAB知VC平面VAB.14.(1)证明:H为VBC的垂心,VCBE,又AH平面VBC,BE为斜线AB在平面VBC上的射影,ABVC.(2)解:由(1)知VCAB,VCBE,VC平面ABE,在平面ABE上
15、,作EDAB,又ABVC,AB面DEC.ABCD,EDC为二面角EABC的平面角,EDC=30,AB平面VCD,VC在底面ABC上的射影为CD.VCD为VC与底面ABC所成角,又VCAB,VCBE,VC面ABE,VCDE,CED=90,故ECD=60,VC与面ABC所成角为60.15.证明:(1)如图所示,取PD的中点E,连结AE,EN,则有ENCDABAM,ENCDABAM,故AMNE为平行四边形.MNAE.第15题图解AE平面PAD,MN平面PAD,MN平面PAD.(2)PA平面ABCD,PAAB.又ADAB,AB平面PAD.ABAE,即ABMN.又CDAB,MNCD.(3)PA平面ABC
16、D,PAAD.又PDA45,E为PD的中点.AEPD,即MNPD.又MNCD,MN平面PCD.16.如图(1)证:由已知AB4,AD,BAD60,第16题图解故BD2AD2+AB2-2ADABcos604+16-22412.又AB2AD2+BD2,ABD是直角三角形,ADB90,即ADBD.在PDB中,PD,PB,BD,PB2PD2+BD2,故得PDBD.又PDADD,BD平面PAD.(2)由BD平面PAD,BD平面ABCD.平面PAD平面ABCD.作PEAD于E,又PE平面PAD,PE平面ABCD,PDE是PD与底面ABCD所成的角.PDE60,PEPDsin60.作EFBC于F,连PF,则
17、PFBF,PFE是二面角PBCA的平面角.又EFBD,在RtPEF中,tanPFE.故二面角PBCA的大小为arctan.17.连结AC1,.RtACC1RtMC1A1,AC1C=MA1C1,A1MC1+AC1C=A1MC1+MA1C1=90.A1MAC1,又ABC-A1B1C1为直三棱柱,CC1B1C1,又B1C1A1C1,B1C1平面AC1M.由三垂线定理知AB1A1M. 点评:要证AB1A1M,因B1C1平面AC1,由三垂线定理可转化成证AC1A1M,而AC1A1M一定会成立18.(1)证明:在正方形ABCD中,MPDCPB,且MDBC,DPPBMDBC12.又已知DNNB12,由平行截割定理的逆定理得NPDD,又DD平面ABCD,NP平面ABCD.(2)NPDDCC,NP、CC在同一平面内,CC为平面NPC与平面CCDD所成二面角的棱.又由CC平面ABCD,得CCCD,CCCM,MCD为该二面角的平面角.在RtMCD中可知MCDarctan,即为所求二面角的大小.(3)由已知棱长为a可得,等腰MBC面积S1,等腰MBD面积S2,设所求距离为h,即为三棱锥CDMB的高.三棱锥DBCM体积为,专心-专注-专业
限制150内