南昌大学工业生产过程控制实验报告(共23页).doc
《南昌大学工业生产过程控制实验报告(共23页).doc》由会员分享,可在线阅读,更多相关《南昌大学工业生产过程控制实验报告(共23页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 南昌大学实验报告学生姓名: 汪余景 学号: 专业班级: 自动化102班 实验类型: 验证 综合 设计 创新 实验日期: 实验成绩: 实验一 单容自衡水箱液位特性测试实验一、实验目的1掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3掌握同一控制系统采用不同控制方案的实现过程。二、实验设备1实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2SA-12挂件一个、RS485/232转换器一个、通讯线一根
2、;3SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5SA-41挂件一个、CP5611专用网卡及网线;6SA-42挂件一个、PC/PPI通讯电缆一根。三、实验原理所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1
3、-11的开度可以改变Q2。液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。根据动态物料平衡关系有Q1-Q2=A (2-1)将式(2-1)表示为增量形式Q1-Q2=A (2-2)式中:Q1,Q2,h分别为偏离某一平衡状态的增量; A水箱截面积。在平衡时,Q1=Q2,0;当Q1发生变化时,液位h随之变化,水箱出 图2-1 单容自衡水箱特性测试系统口处的静压也随之变化,Q2也发生变化 (a)结构图 (b)方框图。由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。但为了简化起
4、见,经线性化处理后,可近似认为Q2与h成正比关系,而与阀F1-11的阻力R成反比,即Q2= 或 R= (2-3) 式中:R阀F1-11的阻力,称为液阻。将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q2,即可得到单容水箱的数学模型为W0(s)= (2-4) 式中T为水箱的时间常数,TRC;K为放大系数,KR;C为水箱的容量系数。若令Q1(s)作阶跃扰动,即Q1(s)=,x0=常数,则式(2-4)可改写为H(s)=K-对上式取拉氏反变换得h(t)=Kx0(1-e-t/T) (2-5) 当t时,h()-h(0)=Kx0,因而有K= (2-6) 当t=T时,则有h(T)=Kx0(1-e-1)=
5、0.632Kx0=0.632h() (2-7) 式(2-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2(a)所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。也可由坐标原点对响应曲线作切线OA,切线与稳态值交点A所对应的时间就是该时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。图2-2 单容水箱的阶跃响应曲线如果对象具有滞后特性时,其阶跃响应曲线则为图2-2(b),在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间,BC为对象的时间常数T,所得的传递函数为:H(S)= (2-8) 四、实验
6、内容与步骤本实验选择下水箱作为被测对象(也可选择上水箱或中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。(一)、智能仪表控制1将“SA-12智能调节仪控制” 挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。图2-3 仪表控制
7、单容水箱特性测试实验接线图2接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相、单相空气开关,给智能仪表及电动调节阀上电。3打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。4在上位机监控界面中将智能仪表设置为“手动”控制,并将输出值设置为一个合适的值,此操作需通过调节仪表实现。5合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。6待下水箱液位平衡后,突增(或突减
8、)智能仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值,液位的响应过程曲线将如图2-4所示。图2-4 单容下水箱液位阶跃响应曲线7根据前面记录的液位值和仪表输出值,按公式(2-6)计算K值,再根据图2-2中的实验曲线求得T值,写出对象的传递函数。(二)、远程数据采集控制1将“SA-22远程数据采集模拟量输出模块”、“SA-23远程数据采集模拟量输入模块”挂件挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS4
9、85通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。2接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相空气开关,给电动调节阀上电。3打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。4以下步骤请参考前面“(一)智能仪表控制”的步骤47。图2-5 远程数据采集控制单容水箱特性测试实验接线图(三)、S7-300PLC控制1将“SA-41 S7-
10、300PLC控制”挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照下面的控制屏接线图连接实验系统。将“LT3下水箱液位”钮子开关拨到“ON”的位置。2接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-300PLC及压力变送器上电,按下启动按钮,合上单相空气开关,给电动调节阀上电。3打开Step 7软件,打开“S7-300”程序进行下载,然后将S7-300PLC置于运行状态,然后运行WinCC组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。
11、4以下步骤请参考前面“(一)智能仪表控制”的步骤47。图2-8 S7-300PLC控制单容水箱特性测试实验接线图五、实验报告要求1画出单容水箱液位特性测试实验的结构框图。(a)是结构图;(b)是方框图2根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。实验过程中的某个时间段的图形:截取该过程中的一段,表示单容水箱自衡达到稳定液位的过程:根据上图可知: 入水流量到液位的过程在平衡点处近似为一阶惯性环节: W0(s)= 式中T为水箱时间常数,TRC;K为放大系数,KR;C为水箱的容量系数 h(t)=Kx0(1-e-t/T) 当t时,h()-h(0)=Kx0,因而有 K= 当t
12、=T时,则有 : h(T)=Kx0(1-e-1)=0.632Kx0=0.632h()由图可知,原来的稳定值为12cm,因此该系统的阶跃输入为12.0cm当达到稳态时h()=100cm ,因此 K=100/12=8.3当液面达到63.2cm时,由图上可知,所需的时间约为28s,则T=28因此,该环节模型为W(s)= 六、思考题1做本实验时,为什么不能任意改变出水阀F1-11开度的大小?答:出水阀F1-11的开度是改变出水量Q2的,改变水箱泄水的过程。在此实验中是先将出水阀F1-11开至适当的开度。之后在单容水箱在稳定的过程中,此阀门是不能任意改变的,因为一改变就会对系统带来干扰,造成系统不稳定,
13、不能正确反映实验特性。只有当系统稳定时,要研究输出量对系统的稳定特性影响时才改变出水阀F1-11。 2用响应曲线法确定对象的数学模型时,其精度与那些因素有关?答:应曲线可能与实验工作电压的波动,执行器的不稳定性,和系统的控制参数比例度、积分时间、微分时间及测量值的波动都可能带来一定的误差,造成精度下降,同时还跟压力传感器的精度,阀门开度,测试软件都有关系。3如果采用中水箱做实验,其响应曲线与下水箱的曲线有什么异同?并分析差异原因。答:若采用中水箱做实验,它的响应曲线要比下水箱变化到的快。 原因:因为中水箱的截面积比下水箱的截面积要小,上升相同的液位高度,下水箱要更长的时间。七、 实验总结 对于
14、实验的学习,我们更加了解装置设备,以及熟悉了MCGS运行环境。体会到了到试验参数的设定的重要性。通过对实验的知道了实验精度与传感器的灵敏度,执行器的不稳定性,系统的控制参数比例度、积分时间、微分时间及测量值的波动都可能有关,因此我们要通过分析综合因素来分析实验曲线的形成过程。同时,通过实验让自己对工业生产过程的实验系统也有了进一步的了解,收获颇多。 南昌大学实验报告学生姓名: 汪余景 学号: 专业班级: 自动化102班 实验类型: 验证 综合 设计 创新 实验日期: 实验成绩: 实验三 水箱液位串级控制系统一、实验目的1通过实验了解水箱液位串级控制系统组成原理。2掌握水箱液位串级控制系统调节器
15、参数的整定与投运方法。3了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。4掌握液位串级控制系统采用不同控制方案的实现过程。二、实验设备(同前)三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为P
16、I或PID控制。由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。本实验系统结构图和方框图如图5-2所示。图5-2 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备
17、有关,可根据实验需要选做或全做。(一)、智能仪表控制1将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。图5-3 智能仪表控制水箱液位串级控制实验接线图2接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相、单相空气开关,给智能仪表1及电动调节阀上电。3打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进
18、入MCGS运行环境,在主菜单中点击“实验十、水箱液位串级控制系统”,进入实验十的监控界面。4在上位机监控界面中点击“启动仪表1”、“启动仪表2”。将主控仪表设置为“手动”,并将输出值设置为一个合适的值,此操作可通过调节仪表实现。5合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少主调节器的输出量,使下水箱的液位平衡于设定值,且中水箱液位也稳定于某一值(此值一般为35cm,以免超调过大,水箱断流或溢流)。6按本章第一节中任一种整定方法整定调节器参数,并按整定得到的参数进行调节器设定。7待液位稳定于给定值时,将调节器切换到“自动”状态,待液位平衡后,通过以下几种方式加干扰:(1) 突增(或突
19、减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(2)打开阀门F2-1、F2-4(或F2-5),用变频器支路以较小频率给中水箱(或下水箱)打水。(干扰作用在主对象或副对象)(3)将阀F1-5、F1-13开至适当开度(改变负载);(4)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;以上几种干扰均要求扰动量为控制量的515,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,下水箱液位的响应过程曲线将如图5-4所示
20、。图5-4 下水箱液位阶跃响应曲线8适量改变主、副控调节仪的PID参数,重复步骤7,用计算机记录不同参数时系统的响应曲线。(二)、远程数据采集控制1将挂件SA-22远程数据采集模拟量输出模块、SA-23远程数据采集模拟量输入模块挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”、“LT3下水箱液位”钮子开关均拨到“ON”的位置。图5-5 远程数据采集控制水箱液位串级控制实验接线图2接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力
21、变送器上电,按下启动按钮,合上单相空气开关,给电动调节阀上电。3打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验十、水箱液位串级控制”,进入实验十的监控界面。4以下步骤请参考前面“(一)智能仪表控制”的步骤48。(三)、S7-300PLC控制1将挂件SA-41 S7-300PLC控制挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照下面的控制屏接线图连接实验系统。将“LT2中水箱液位”、“LT3下水箱液位”钮子开关均拨到“ON”的位置。2接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 南昌大学 工业生产 过程 控制 实验 报告 23
限制150内