2018年初中数学突破中考压轴题几何模型之中点模型-教案(共8页).doc
《2018年初中数学突破中考压轴题几何模型之中点模型-教案(共8页).doc》由会员分享,可在线阅读,更多相关《2018年初中数学突破中考压轴题几何模型之中点模型-教案(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中点模型授课日期时 间主 题中点模型教学内容学习过中位线之后,你能否总结一下,目前我们学习了哪些定理或性质与中点有关?直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你又想到了什么?1. 直角三角形斜边中线定理:如图,在中,为中点,则有:。2. 三线合一:在中:(1);(2)平分;(3),(4).“知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出余下两条。3. 中位线定理:如图,在中,若,则且。4. 中线倍长(倍长中线):如图(左图),在中,为中点,延长到使,联结,则有:。作用:转移线段和
2、角。 例1: 如图所示,已知为中点,点在上,且,求证:.提示:用倍长中线法,借助等腰三角形和全等三角形证明试一试:如图,已知在中,是边上的中线,是上一点,且,延长交于,求证:。证明:延长DE至点G,使得ED=DG,联结CG类比倍长中线易得:BDECDG所以BED=DGC,BE=CG因为BE=AC,所以AC=GC所以EAC=DGC,因为BED=AEF所以AEF=FAE所以AF=EF例2:如图,已知中,为高线,点是的中点,点是的中点.求证: 。证明:联结EM、DM在RtBEC中,在RtBDC中所以EM=DM,又因为EN=ND,所以例3:如图,在中,为的平分线,为的中点,求证:。证明:延长FM至点G
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年初 数学 突破 中考 压轴 几何 模型 之中 教案
限制150内