2017高考试题分类汇编之解析几何和圆锥曲线文科(共21页).doc
《2017高考试题分类汇编之解析几何和圆锥曲线文科(共21页).doc》由会员分享,可在线阅读,更多相关《2017高考试题分类汇编之解析几何和圆锥曲线文科(共21页).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年高考试题分类汇编之解析几何(文)一、 选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课表I文)已知是双曲线的右焦点,是上一点,且与轴垂直,点的坐标是,则的面积为( ) 【解答】解:由双曲线C:x2=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y0,则y=3,则P(2,3),APPF,则丨AP丨=1,丨PF丨=3,APF的面积S=丨AP丨丨PF丨=,同理当y0时,则APF的面积S=,故选D【点评】本题考查双曲线的简单几何性质,考查数形结合思想,属于基础题2.(2017课标II文)若,则双曲线的离心率的取值范围是( ) 【分
2、析】利用双曲线方程,求出a,c然后求解双曲线的离心率的范围即可【解答】解:a1,则双曲线y2=1的离心率为:=(1,)故选:C【点评】本题考查双曲线的简单性质的应用,考查计算能力3.(2017浙江)椭圆的离心率是( ) 【分析】直接利用椭圆的简单性质求解即可【解答】解:椭圆+=1,可得a=3,b=2,则c=,所以椭圆的离心率为:=故选:B【点评】本题考查椭圆的简单性质的应用,考查计算能力4.(2017课标II文)过抛物线的焦点,且斜率为的直线交于点(在轴上方), 为的准线,点在上且,则到直线的距离为( ) 【分析】利用已知条件求出M的坐标,求出N的坐标,利用点到直线的距离公式求解即可【解答】解
3、:抛物线C:y2=4x的焦点F(1,0),且斜率为的直线:y=(x1),过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l可知:,解得M(3,2)可得N(1,2),NF的方程为:y=(x1),即,则M到直线NF的距离为:=2故选:C【点评】本题考查直线与抛物线的位置关系的应用,考查计算能力5.(2017课标I文)设是椭圆长轴的两个端点,若上存在点满足,则的取值范围是( ) 【分析】分类讨论,由要使椭圆C上存在点M满足AMB=120,AMB120,AMO60,当假设椭圆的焦点在x轴上,tanAMO=tan60,当即可求得椭圆的焦点在y轴上时,m3,tanAMO=tan6
4、0=,即可求得m的取值范围【解答】解:假设椭圆的焦点在x轴上,则0m3时,假设M位于短轴的端点时,AMB取最大值,要使椭圆C上存在点M满足AMB=120,AMB120,AMO60,tanAMO=tan60=,解得:0m1;当椭圆的焦点在y轴上时,m3,假设M位于短轴的端点时,AMB取最大值,要使椭圆C上存在点M满足AMB=120,AMB120,AMO60,tanAMO=tan60=,解得:m9,m的取值范围是(0,19,+)故选A【点评】本题考查椭圆的标准方程,特殊角的三角函数值,考查分类讨论思想及数形结合思想的应用,考查计算能力,属于中档题6.(2017课标III文)已知椭圆,的左、右顶点分
5、别为,且以线段为直径的圆与直线相切,则的离心率为( ) 【分析】以线段A1A2为直径的圆与直线bxay+2ab=0相切,可得原点到直线的距离=a,化简即可得出【解答】解:以线段A1A2为直径的圆与直线bxay+2ab=0相切,原点到直线的距离=a,化为:a2=3b2椭圆C的离心率e=故选:A【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题7.(2017天津文)已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为的等边三角形(为原点),则双曲线的方程为( ) 【分析】利用三角形是正三角形,推出a,b关系,通过c=2,求解a,b
6、,然后等到双曲线的方程【解答】解:双曲线=1(a0,b0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),可得c=2,即,解得a=1,b=,双曲线的焦点坐标在x轴,所得双曲线方程为:故选:D【点评】本题考查双曲线的简单性质的应用,考查计算能力二、 填空题(将正确的答案填在题中横线上)8. (2017天津文)设抛物线的焦点为,准线为.已知点在上,以为圆心的圆与轴的正半轴相切于点.若,则圆的方程为_【分析】根据题意可得F(1,0),FAO=30,OA=1,由此求得OA的值,可得圆心C的坐标以及圆的半径,从而求得圆C方程【解答】解:设抛物线y2=4x的焦点为F(1,0
7、),准线l:x=1,点C在l上,以C为圆心的圆与y轴的正半轴相切与点A,FAC=120,FAO=30,OA=1,OA=,A(0,),如图所示:C(1,),圆的半径为CA=1,故要求的圆的标准方程为 ,故答案为:(x+1)2+=1【点评】本题主要考查求圆的标准方程的方法,抛物线的简单几何性质,属于中档题9. (2017北京文)若双曲线的离心率为,则实数_【分析】利用双曲线的离心率,列出方程求和求解m 即可【解答】解:双曲线x2=1(m0)的离心率为,可得:,解得m=2故答案为:2【点评】本题考查双曲线的简单性质,考查计算能力10. (2017山东文)在平面直角坐标系中,双曲线 的右支与焦点为的抛
8、物线交于两点,若,则该双曲线的渐近线方程为 【分析】把x2=2py(p0)代入双曲线=1(a0,b0),可得:a2y22pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出【解答】解:把x2=2py(p0)代入双曲线=1(a0,b0),可得:a2y22pb2y+a2b2=0,yA+yB=,|AF|+|BF|=4|OF|,yA+yB+2=4,=p,=该双曲线的渐近线方程为:y=x故答案为:y=x【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.11.(2017课标III文)双曲线的一条渐近线方程为,则
9、.【分析】利用双曲线方程,求出渐近线方程,求解a即可【解答】解:双曲线(a0)的一条渐近线方程为y=x,可得,解得a=5故答案为:5【点评】本题考查双曲线的简单性质的应用,考查计算能力12.(2017江苏) 在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于点,其焦点是,则四边形的面积是 .【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积【解答】解:双曲线y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,),F1(2,0)F2(2,0)则四边形F1PF2Q的面积是:=2故答案为:2【点评】本题考查双曲线的简单性质的应用,
10、考查计算能力13. (2017江苏)在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是 .【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+50,分析可得其表示表示直线2x+y+50以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(12x0,y0)(x0,6y0)=(12+x0)x0y0(6y0)=12x0+6y+x02+y0220,化为:12x06y0+300,即2x0y0+50,表示直线2xy+5=0以及直线上方的区域,联立,解可得x0=5或x0=1,
11、结合图形分析可得:点P的横坐标x0的取值范围是5,1,故答案为:5,1【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式三、解答题(应写出必要的文字说明、证明过程或演算步骤)14.(2017课标I文)设为曲线上两点,与的横坐标之和为(1)求直线的斜率;(2)设为曲线上一点,在处的切线与直线平行,且,求直线的方程【分析】(1)设A(x1,),B(x2,),运用直线的斜率公式,结合条件,即可得到所求;(2)设M(m,),求出y=的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m,即有M的坐标,再由两直线垂直的条件:斜率之积为1,可得x1
12、,x2的关系式,再由直线AB:y=x+t与y=联立,运用韦达定理,即可得到t的方程,解得t的值,即可得到所求直线方程【解答】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k=(x1+x2)=4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x24x4t=0,即有x1+x2=4,x1x2=4t,再由y=的导数为y=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AMBM可得,kAMkBM=1,即为=1,化为x1x2+2(x1+x2)+20=0,即为4t+8+20=0,解得t=7则直
13、线AB的方程为y=x+7【点评】本题考查直线与抛物线的位置关系,注意联立直线方程和抛物线的方程,运用韦达定理,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题15.(2017课标II文)设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足.(1)求点的轨迹方程;(2)设点在直线上,且.证明:过点且垂直于的直线过的左焦点. 【分析】(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;(2)设Q(3,m),P(cos,sin),(02),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 高考 试题 分类 汇编 解析几何 圆锥曲线 文科 21
限制150内