初中一次函数分段函数典例题(共11页).doc





《初中一次函数分段函数典例题(共11页).doc》由会员分享,可在线阅读,更多相关《初中一次函数分段函数典例题(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 识别分段函数,解决收费问题 定义:一般地,如果有实数a1,a2,a3k1,k,2k3b1,b2,b3且a1a2a3函数Y与自变量X之间存在k1x+b1 xa1y = k2x+b2 a1xa2 的函数解析式,则称该函数解析式为X的分段函数。K3x+b3 a2xa3 应该指出:(一), 函数解析式这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2等几个不同函数的简单组合,而k1x+b1, k2x+b2 是函数Y的几种不同的表达式.。这个整体只是一个函数,不能认为它是两个不同的函数,只能说是同一函数中的自变量X在几种不同取值范围内的不同表达式。(二),由于k1
2、,k2,k3b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。(四), 一次函数的分段函数是简单的分段函数。分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。 收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不
3、同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间(分钟)与相应话费(元)之间的函数图象如图1所示:()月通话为100分钟时,应交话费元;()当x100时,求与之间的函数关系式;(3)月通话为280分钟时,应交话费多少元? 图1二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1) 分别写出当0x15和x15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水
4、费多少元? 图2三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0x100和x100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电? 图3谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。这些分段函数都是
5、直线型。通常是正比例函数的图像和一次函数的图像构成。下面我们归纳分析如下,供学习时参考。1、二段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成工程进度满足如图1所示的函数关系,该家庭共支付工资8000元(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?解析:设正比例函数的解析式为:y=k1x,因为图象经过点(3,),所以,= k13,所以k1=,所以y=x,
6、0x3设一次函数的解析式(合作部分)是y=k2x+b,(是常数)因为图象经过点(3,),(5,),所以,由待定系数法得:,解得:一次函数的表达式为,所以,当时,解得完成此房屋装修共需9天。方法2解:由正比例函数解析式可知:甲的效率是,乙工作的效率: 甲、 乙合作的天数:(天)甲先工作了3天,完成此房屋装修共需9天(2)由正比例函数的解析式:y=x,可知:甲的工作效率是 ,所以,甲9天完成的工作量是:,甲得到的工资是:(元)评析:在这里未知数的系数的意义是表示他们的工作效率。例2、一名考生步行前往考场, 10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图
7、2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )A20分钟 22分钟 24分钟 D26分钟解析:步行前往考场,是满足正比例函数关系,设正比例函数的解析式为:y=k1x,因为图象经过点(10,),所以,= k110,所以k1=,所以y=x,0x10由正比例函数解析式可知:甲的效率是,所以,步行前往考场需要的时间是:1=40(分钟),乘出租车赶往考场,是满足一次函数关系,所以,设一次函数的解析式是y=k2x+b,(是常数),因为图象经过点(10,),(12,),所以,由待定系数法得:,解得:解得:,一次函数的表达式为:,所以,乘出租车赶往考场用的时间是:x=,解得:x=6分钟
8、,所以,先步行前往考场,后乘出租车赶往考场共用时间为:10+6=16分钟,所以,他到达考场所花的时间比一直步行提前了:40-16=24(分钟),故选C。评析:在这里未知数的系数的意义是表示他们的行使速度。例3、某公司专销产品A,第一批产品A上市40天内全部售完该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?解析:
9、(1) 由图3可得, 当0t30时,市场日销售量y与上市时间t的关系是正比例函数,所以设市场的日销售量:y=kt, 点(30,60)在图象上, 60=30k k=2即 y=2t, 当30t40时,市场日销售量y与上市时间t的关系是一次函数关系,所以设市场的日销售量:y=k1t+b, 因为点(30,60)和(40,0)在图象上,所以 ,解得 k1=6,b=240 y=6t+240 综上可知,当0t30时,市场的日销售量:y=2t,当30t40时,市场的日销售量:y=-6t+240。 (2) 由图4可得, 当0t20时,市场销售利润w与上市时间t的关系是正比例函数,所以设市场的日销售量:w=kt,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 一次 函数 分段 例题 11

限制150内