2010中考数学专题复习压轴题(共66页).doc
《2010中考数学专题复习压轴题(共66页).doc》由会员分享,可在线阅读,更多相关《2010中考数学专题复习压轴题(共66页).doc(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中考数学专题复习压轴题1.(2008年四川省宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;(3) AOB与BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a0)的顶点坐标为).2. (08浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点
2、重合),将纸片折叠,使点A落在射线AB上(记为点A),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;(1)求OAB的度数,并求当点A在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.yBCyTACBOxOTAx 3. (08浙江温州)如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范
3、围);(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由ABCDERPHQ4.(08山东省日照市)在ABC中,A90,AB4,AC3,M是AB上的动点(不与A,B重合),过M点作MNBC交AC于点N以MN为直径作O,并在O内作内接矩形AMPN令AMx (1)用含x的代数式表示NP的面积S; (2)当x为何值时,O与直线BC相切? (3)在动点M的运动过程中,记NP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?ABCMNP图 3OABCMND图 2OABCMNP图 1O5、(2007浙江金华)如图1,已知双
4、曲线y=(k0)与直线y=kx交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为 ;若点A的横坐标为m,则点B的坐标可表示为 ;(2)如图2,过原点O作另一条直线l,交双曲线y=(k0)于P,Q两点,点P在第一象限.说明四边形APBQ一定是平行四边形;设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由. xyBAO图1BAOPQ图26. (2008浙江金华)如图1,在平面直角坐标系中,己知AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,
5、连结AP,并把AOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.7.(2008浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;将图1中的正方形CEFG绕着点C按顺时
6、针(或逆时针)方向旋转任意角度,得到如图2、如图3情形请你通过观察、测量等方法判断中得到的结论是否仍然成立,并选取图2证明你的判断(2)将原题中正方形改为矩形(如图46),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由(3)在第(2)题图5中,连结、,且a=3,b=2,k=,求的值8. (2008浙江义乌)如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线将直线平移,平移后的直线与轴交于点D,与轴交于点E(1)将直线向右平移,设平移距离CD为(t0),直角梯形OABC
7、被直线扫过的面积(图中阴影部份)为,关于的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4求梯形上底AB的长及直角梯形OABC的面积;当时,求S关于的函数解析式;(2)在第(1)题的条件下,当直线向左或向右平移时(包括与直线BC重合),在直线AB上是否存在点P,使为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由 9.(2008山东烟台)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:BDEBCF; (2)判断BEF的形状,并说明理由;(3)设BEF的面积为S,求S
8、的取值范围. 10.(2008山东烟台)如图,抛物线交轴于A、B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线,交轴于C、D两点.(1)求抛物线对应的函数表达式;(2)抛物线或在轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥杭州湾跨海大桥通车了通车后,苏南A地到宁波港的路程比原来缩短了120千米已知运输车速度不变时,行驶时间将从原来的3时20
9、分缩短到2时(1)求A地经杭州湾跨海大桥到宁波港的路程(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有
10、几车?标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸都是矩形本题中所求边长或面积都用含的代数式表示12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸已知标准纸的短边长为(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边与长边对齐折叠,点落在上的点处,铺平后得折痕;第二步将长边与折痕对齐折叠,点正好与点重合,铺平后得折痕则的值是 ,的长分别是 , (2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值(3)如图3,由8个大小
11、相等的小正方形构成“”型图案,它的四个顶点分别在“16开”纸的边上,求的长(4)已知梯形中,且四个顶点都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积ABCDBCADEGHFFE4开2开8开16开图1图2图3a13.(2008山东威海)如图,在梯形ABCD中,ABCD,AB7,CD1,ADBC5点M,N分别在边AD,BC上运动,并保持MNAB,MEAB,NFAB,垂足分别为E,F(1)求梯形ABCD的面积; (2)求四边形MEFN面积的最大值 (3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由 CDABEFNM14(2008山东威海
12、)如图,点A(m,m1),B(m3,m1)都在反比例函数的图象上 xOyAB(1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形, 友情提示:本大题第(1)小题4分,第(2)小题7分对完成第(2)小题有困难的同学可以做下面的(3)选做题选做题2分,所得分数计入总分但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分 试求直线MN的函数表达式 xOy1231QP2P1Q1(3)选做题:在平面直角坐标系中,点P的坐标为(5,0),点Q的坐标为(0,3),把线段PQ向右平移4个单位,然后再向上平移2个单位,得到线段P1Q1,则点P1
13、的坐标为 ,点Q1的坐标为 15(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.AOBMDC图12yx16.(2008年浙江省绍兴市)将一矩形纸片放在平面直角坐标系
14、中,动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动当其中一点到达终点时,另一点也停止运动设点的运动时间为(秒)(1)用含的代数式表示;(2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标;(4) 连结,将沿翻折,得到,如图2问:与能否平行?与能否垂直?若能,求出相应的值;若不能,说明理由图1OPAxBDCQy图2OPAxBCQyE17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点(1)求过三点抛物线的解析式并求出顶点的坐标;(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出
15、点坐标;若不存在,请说明理由;(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由AOxyBFC图1618.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,矩形绕点按顺时针方向旋转后得到矩形点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点(1)判断点是否在轴上,并说明理由;(2)求抛物线的函数表达式;(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由yxODECFAB19.(2008年四川省巴中市) 已知
16、:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点(1)写出直线的解析式(2)求的面积(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?20.(2008年成都市)如图,在平面直角坐标系xOy中,OAB的顶点的坐标为(10,0),顶点B在第一象限内,且=3,sinOAB=.(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形
17、为梯形?若存在,求出点P的坐标;若不存在,请说明理由;(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记QNM的面积为,QNR的面积,求的值.21.(2008年乐山市)在平面直角坐标系中ABC的边AB在x轴上,且OAOB,以AB为直径的圆过点C若C的坐标为(0,2),AB=5, A,B两点的横坐标XA,XB是关于X的方程的两根:(1) 求m,n的值(2) 若ACB的平分线所在的直线交x轴于点D,试求直线对应的一次函数的解析式(3) 过点D任作一直线分别交射线CA,CB(点C除
18、外)于点M,N,则的值是否为定值,若是,求出定值,若不是,请说明理由ACOBNDML22.(2008年四川省宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;(3)AOB与BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a0)的顶点坐标为)23.(天津市2008年)已知抛物线,()若,求该抛物线与轴公共点的坐标;()若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;()若,且时,对应的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010 中考 数学 专题 复习 压轴 66
限制150内