磁盘调度算法实验报告(共20页).docx
《磁盘调度算法实验报告(共20页).docx》由会员分享,可在线阅读,更多相关《磁盘调度算法实验报告(共20页).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上操作系统实 验 报 告课程名称操作系统实验课程编号实验项目名称磁盘调度算法学号年级姓名专业计算机科学与技术学生所在学院计算机科学与技术学院指导教师实验室名称地点 哈尔滨工程大学计算机科学与技术学院磁盘调度算法一 实验概述:1.实验名称:磁盘调度算法2.实验目的:1)通过学习 EOS 实现磁盘调度算法的机制,掌握磁盘调度算法执行的条件和时机;2)观察 EOS 实现的 FCFS、SSTF 和 SCAN 磁盘调度算法,了解常用的磁盘调度算法;3)编写 CSCAN 和 N-Step-SCAN 磁盘调度算法,加深对各种扫描算法的理解。3.实验类型:验证、设计4.实验内容: 1)
2、准备实验,创建一个EOS Kernel项目; 2)验证先来先服务(FCFS)磁盘调度算法; 3)验证最短寻道时间优先(SSTF)磁盘调度算法; 4)验证SSTF算法造成的线程“饥饿现象”; 5)验证扫描(SCAN)磁盘调度算法; 6)改写SCAN算法; 7)编写循环扫描(CSCAN)磁盘调度算法; 8)验证SSTF、SCAN及CSCAN算法中的“磁臂粘着”现象; 9)编写N-Step-SCAN磁盘调度算法。二实验环境操作系统:windows XP编译器:Tevalaton OS Lab语言:C三实验过程1.设计思路和流程图: SCAN算法流程图: SSTF算法的流程图: CSACN流程图:循环
3、结束后记录了向内移动距离最短的线程和向外移动距离最长的线程 有向内移动的线程? YES NO选择向内移动距离最短的线程选择向外移动距离最长的线程N-STEP-SCAN算法调度:2.实验过程:1)新建一个 EOS Kernel 项目;2)在 sysproc.c 文件中找到控制台命令“ds”对应的函数 ConsoleCmdDiskSchedule。“ ds” 命令专门用来测试磁盘调度算法。阅读该函数中的源代码,目前该函数使磁头初始停留在磁道 10, 其它被阻塞的线程依次访问磁道 8、21、9、78、0、41、10、67、12、10;3)打开 io/block.c 文件,在 第 378 行找到磁盘调
4、度算法函数 IopDiskSchedule。阅读该函数中的源代码,目前此函数实现了 FCFS 磁盘调度算法,流程图如下:4)生成项目,启动调试,待 EOS 启动完毕,在 EOS 控制台中输入命令“ds”后按回车;在 EOS 控制台中会首先显示磁头的起始位置是 10 磁道,然后按照线程被阻塞的顺序依次显示线程的 信息(包括线程 ID 和访问的磁道号)。磁盘调度算法执行的过程中,在 OS Lab 的“输出”窗口中也会首 先显示磁头的起始位置,然后按照线程被唤醒的顺序依次显示线程信息(包括线程 ID、访问的磁道号、磁 头移动的距离和方向),并在磁盘调度结束后显示此次调度的统计信息(包括总寻道数、寻道
5、次数和平均 寻道数)。对比 EOS 控制台和“输出”窗口中的内容,可以发现 FCFS 算法是根据线程访问磁盘的先后顺序 进行调度的。下图显示了本次调度执行时磁头移动的轨迹:5)打开sstf.c 文件,该文件提供的 IopDiskSchedule 函数实现了 SSTF 磁盘调度算法,其中应注意:变量 Offset 是有符号的长整型,用来表示磁头的偏移(包括距离和方向)。Offset 大于 0 时表示 磁头向内移动(磁道号增加);小于 0 时表示磁头向外移动(磁道号减少);等于 0 时表示磁头没 有移动。而名称以“Distance”结尾的变量都是无符号长整型,只表示磁头移动的距离(无方向)。 所以
6、在比较磁头的偏移和距离时,或者在将偏移赋值给距离时,都要取偏移的绝对值(调用 C 库 函数 abs)。本实验在实现其它磁盘调度算法时也同样遵守此约定;在开始遍历之前,将最小距离(ShortestDistance)初始化为最大的无符号长整型数,这样,第 一次计算的距离一定会小于最小距离,从而可以使用第一次计算的距离来再次初始化最小距离。 本实验在实现其它磁盘调度算法时也同样使用了此技巧。6)生成项目,启动调试,待EOS 启动完毕,在 EOS 控制台中输入命令“ds”后按回车;对比 EOS 控制台和“输出”窗口中的内容(特别是线程 ID 的顺序),可以发现,SSTF 算法唤醒线程的 顺序与线程被阻
7、塞的顺序是不同的。图18-4显示了本次调度执行时磁头移动的轨迹。对比SSTF算法与FCFS 算法在“输出”窗口中的内容,可以看出,SSTF 算法的平均寻道数明显低于 FCFS 算法。7)验证SSTF算法造成的线程“饥饿现象”,使用 SSTF 算法时,如果不断有新线程要求访问磁盘,而且其所要访问的磁道与当前磁头所在磁道的 距离较近,这些新线程的请求必然会被优先满足,而等待队列中一些老线程的请求就会被严重推迟,从而 使老线程出现“饥饿”现象。8)修改sysproc.c文件ConsoleCmdDiskSchedule函数中的源代码,仍然使磁头初始停留在磁道10,而让其它线程依次访问磁道 78、21、
8、9、8、11、41、10、67、12、10,生成项目,启动调试,待 EOS 启动完毕,在 EOS 控制台中输入命令“ds”后按回车;查看“输出”窗口中显示的内容,可以发现,虽然访问 78 号磁道的线程的请求第一个被放入请求队 列,但却被推迟到最后才被处理,出现了“饥饿”现象。如果不断有新线程的请求到达并被优先满足,则 访问 78 号磁道的线程的“饥饿”情况就会更加严重;修改访问磁道顺序:修改后执行“ds”命令的结果:多次输入“ds”命令:9)对 SSTF 算法稍加改进后可以形成 SCAN 算法,可防止老线程出现“饥饿”现象。打开scan.c 文件,该文件提供的 IopDiskSchedule
9、函数实现了 SCAN 磁盘调度算法。其中应注意下面几点:在 block.c 文件中的第 374 行定义了一个布尔类型的全局变量 ScanInside,用于表示扫描算法中 磁头移动的方向。该变量值为 TRUE 时表示磁头向内移动(磁道号增加);值为 FALSE 时表示磁头 向外移动(磁道号减少)。该变量初始化为 TRUE,表示 SCAN 算法第一次执行时,磁头向内移动;在 scan.c 文件的 IopDiskSchedule 函数中使用了双重循环。第一次遍历队列时,查找指定方向 上移动距离最短的线程,如果在指定方向上已经没有线程,就变换方向,进行第二次遍历,同样 是查找移动距离最短的线程。在这两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 磁盘 调度 算法 实验 报告 20
限制150内