指数函数和对数函数练习题(共26页).doc
《指数函数和对数函数练习题(共26页).doc》由会员分享,可在线阅读,更多相关《指数函数和对数函数练习题(共26页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三章指数函数和对数函数1正整数指数函数2指数扩充及其运算性质1正整数指数函数函数yax(a0,a1,xN)叫作_指数函数;形如ykax(kR,a0,且a1)的函数称为_函数2分数指数幂(1)分数指数幂的定义:给定正实数a,对于任意给定的整数m,n(m,n互素),存在唯一的正实数b,使得bnam,我们把b叫作a的次幂,记作b;(2)正分数指数幂写成根式形式:(a0);(3)规定正数的负分数指数幂的意义是:_(a0,m、nN,且n1);(4)0的正分数指数幂等于_,0的负分数指数幂_3有理数指数幂的运算性质(1)aman_(a0);(2)(am)n_(a0);(3)(a
2、b)n_(a0,b0)一、选择题1下列说法中:16的4次方根是2;的运算结果是2;当n为大于1的奇数时,对任意aR都有意义;当n为大于1的偶数时,只有当a0时才有意义其中正确的是()A B C D2若2a3,化简的结果是()A52a B2a5 C1 D13在()1、21中,最大的是()A()1 B C D214化简的结果是()Aa B Ca2 D5下列各式成立的是()A. B()2C. D.6下列结论中,正确的个数是()当a0);函数y(3x7)0的定义域是(2,);若100a5,10b2,则2ab1.A0 B1C2 D3二、填空题7.的值为_8若a0,且ax3,ay5,则_.9若x0,则(2
3、)(2)4(x)_.三、解答题10(1)化简:(xy)1(xy0);(2)计算:.11设3x0,y0,且x2y0,求的值3指数函数(一)1指数函数的概念一般地,_叫做指数函数,其中x是自变量,函数的定义域是_2指数函数yax(a0,且a1)的图像和性质a10a0时,_;当x0时,_;当x0且a1)2函数f(x)(a23a3)ax是指数函数,则有()Aa1或a2 Ba1Ca2 Da0且a13函数ya|x|(a1)的图像是()4已知f(x)为R上的奇函数,当x0时,f(x)3x,那么f(2)的值为()A9 B.C D95如图是指数函数yax;ybx;ycx;ydx的图像,则a、b、c、d与1的大小
4、关系是()Aab1cdBba1dcC1abcdDab1d0,a1)的图像不经过第二象限,则a,b必满足条件_9函数y823x(x0)的值域是_三、解答题10比较下列各组数中两个值的大小:(1)0.21.5和0.21.7;(2)和;(3)21.5和30.2.112000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m3”,副标题是:“垃圾的体积每三年增加一倍”如果把3年作为垃圾体积加倍的周期,请你根据下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,回答下列问题周期数n体积V(m3)050 0002015
5、0 0002250 00022n50 0002n(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少?(2)根据报纸所述的信息,你估计3年前垃圾的体积是多少?(3)如果n2,这时的n,V表示什么信息?(4)写出n与V的函数关系式,并画出函数图像(横轴取n轴)(5)曲线可能与横轴相交吗?为什么?能力提升12定义运算ab,则函数f(x)12x的图像是()13定义在区间(0,)上的函数f(x)满足对任意的实数x,y都有f(xy)yf(x)(1)求f(1)的值;(2)若f()0,解不等式f(ax)0.(其中字母a为常数)3指数函数(二)1下列一定是指数函数的是()Ay3x Byxx(
6、x0,且x1)Cy(a2)x(a3) Dy(1)x2指数函数yax与ybx的图像如图,则()Aa0,b0 Ba0C0a1 D0a1,0b13函数yx的值域是()A(0,) B0,)CR D(,0)4若()2a1()32a,则实数a的取值范围是()A(1,) B(,)C(,1) D(,)5设()b()a1,则()Aaaabba BaabaabCabaaba Dabbaaa6若指数函数f(x)(a1)x是R上的减函数,那么a的取值范围为()Aa2C1a0 D0a1一、选择题1设Py|yx2,xR,Qy|y2x,xR,则()AQP BQPCPQ2,4 DPQ(2,4)2函数y的值域是()A0,) B
7、0,4 C0,4) D(0,4)3函数yax在0,1上的最大值与最小值的和为3,则函数y2ax1在0,1上的最大值是()A6 B1 C3 D.4若函数f(x)3x3x与g(x)3x3x的定义域均为R,则()Af(x)与g(x)均为偶函数 Bf(x)为偶函数,g(x)为奇函数Cf(x)与g(x)均为奇函数 Df(x)为奇函数,g(x)为偶函数5函数yf(x)的图像与函数g(x)ex2的图像关于原点对称,则f(x)的表达式为()Af(x)ex2 Bf(x)ex2Cf(x)ex2 Df(x)ex26已知a,b,c,则a,b,c三个数的大小关系是()Acab BcbaCabc Dba0时,f(x)12
8、x,则不等式f(x)的解集是_9函数y的单调递增区间是_三、解答题10(1)设f(x)2u,ug(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y的单调区间11函数f(x)4x2x13的定义域为,(1)设t2x,求t的取值范围;(2)求函数f(x)的值域能力提升12函数y2xx2的图像大致是()13已知函数f(x).(1)求ff(0)4的值;(2)求证:f(x)在R上是增函数;(3)解不等式:0f(x2).习题课1下列函数中,指数函数的个数是()y23x;y3x1;y3x;yx3.A0 B1 C2 D32设f(x)为定义在R上的奇函数,当x0时,f(x)2x2xb(b为
9、常数),则f(1)等于()A3 B1 C1 D33对于每一个实数x,f(x)是y2x与yx1这两个函数中的较小者,则f(x)的最大值是()A1 B0C1 D无最大值4将化成指数式为_5已知a40.2,b80.1,c()0.5,则a,b,c的大小顺序为_6已知3,求x的值一、选择题1的值为()A. B C. D2化简的结果是()A3b2a B2a3bCb或2a3b Db3若0x1,则2x,()x,(0.2)x之间的大小关系是()A2x(0.2)x()x B2x()x(0.2)xC()x(0.2)x2x D(0.2)x()x1,b0Ba1,b0C0a0D0a1,b0,且a1)在区间1,2上的最大值
10、比最小值大,求a的值能力提升12已知f(x)(axax)(a0且a1),讨论f(x)的单调性13根据函数y|2x1|的图像,判断当实数m为何值时,方程|2x1|m无解?有一解?有两解?4对数(一)1对数的概念如果abN(a0,且a1),那么数b叫做_,记作_,其中a叫做_,N叫做_2常用对数与自然对数通常将以10为底的对数叫做_,以e为底的对数叫做_,log10N可简记为_,logeN简记为_3对数与指数的关系若a0,且a1,则axNlogaN_.对数恒等式:_;logaax_(a0,且a1)4对数的性质(1)1的对数为_;(2)底的对数为_;(3)零和负数_一、选择题1有下列说法:零和负数没
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 指数函数 对数 函数 练习题 26
限制150内