2017年浙江省宁波市中考数学试卷(共30页).doc
《2017年浙江省宁波市中考数学试卷(共30页).doc》由会员分享,可在线阅读,更多相关《2017年浙江省宁波市中考数学试卷(共30页).doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(4分)在,0,2这四个数中,为无理数的是()ABC0D22(4分)下列计算正确的是()Aa2+a3=a5B(2a)2=4aCa2a3=a5D(a2)3=a53(4分)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮“泰欧”轮,其中45万吨用科学记数法表示为()A0.45106吨B4.5105吨C45104吨D4.5104吨4(4分)要使二次根式有意义,则x的取值范围是()Ax3Bx3Cx3Dx35(4分)如
2、图所示的几何体的俯视图为()ABCD6(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()ABCD7(4分)已知直线mn,将一块含30角的直角三角板ABC按如图方式放置(ABC=30),其中A,B两点分别落在直线m,n上,若1=20,则2的度数为()A20B30C45D508(4分)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A2B3C5D79(4分)如图,在RtABC中,A=90,BC=2,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则的长为()ABCD210(4分)抛物线y=x22x+m2
3、+2(m是常数)的顶点在()A第一象限B第二象限C第三象限D第四象限11(4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EFBC,分别交BD,CD于G,F两点若M,N分别是DG,CE的中点,则MN的长为()A3BCD412(4分)一个大矩形按如图方式分割成九个小矩形,且只有标号为和的两个小矩形为正方形,在满足条件的所有分割中若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A3B4C5D6二、填空题(每题4分,满分24分,将答案填在答题纸上)13(4分)实数8的立方根是 14(4分)分式方程=的解是 15(4分)如图,用同样大
4、小的黑色棋子按如图所示的规律摆放:则第个图案有 个黑色棋子16(4分)如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了 米(参考数据:sin340.56,cos340.83,tan340.67)17(4分)已知ABC的三个顶点为A(1,1),B(1,3),C(3,3),将ABC向右平移m(m0)个单位后,ABC某一边的中点恰好落在反比例函数y=的图象上,则m的值为 18(4分)如图,在菱形纸片ABCD中,AB=2,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cosEFG的值为 三、解答
5、题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19(6分)先化简,再求值:(2+x)(2x)+(x1)(x+5),其中x=20(8分)在44的方格纸中,ABC的三个顶点都在格点上(1)在图1中画出与ABC成轴对称且与ABC有公共边的格点三角形(画出一个即可);(2)将图2中的ABC绕着点C按顺时针方向旋转90,画出经旋转后的三角形21(8分)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,
6、从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由22(10分)如图,正比例函数y1=3x的图象与反比例函数y2=的图象交于A、B两点点C在x轴负半轴上,AC=AO,ACO的面积为12(1)求k的值;(2)根据图象,当y1y2时,写出x的取值范围23(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,
7、某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?24(10分)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正
8、方形,且FEB=45,tanAEH=2,求AE的长25(12分)如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点求证:APMAON;设点M的横坐标为m,求AN的长(用含m的代数式表示)26(14分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形(1)如图1,在半对角四边形ABCD中,B=D,C=A,求B与C的度数之和;(2)如图2,锐角ABC内接于O,若边A
9、B上存在一点D,使得BD=BO,OBA的平分线交OA于点E,连结DE并延长交AC于点F,AFE=2EAF求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DGOB于点H,交BC于点G,当DH=BG时,求BGH与ABC的面积之比2017年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(4分)在,0,2这四个数中,为无理数的是()ABC0D2【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,0,2是有理数,是无理数,故选:A【点评】此题主要考查了无理数的定
10、义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.(每两个8之间依次多1个0)等形式2(4分)下列计算正确的是()Aa2+a3=a5B(2a)2=4aCa2a3=a5D(a2)3=a5【分析】根据积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C【点评】本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键3(4分)2017年2月13日,宁波舟山港4
11、5万吨原油码头首次挂靠全球最大油轮“泰欧”轮,其中45万吨用科学记数法表示为()A0.45106吨B4.5105吨C45104吨D4.5104吨【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:将45万用科学记数法表示为:4.5105故选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4(4分)要使二次根式有意义,则x的取值范围
12、是()Ax3Bx3Cx3Dx3【分析】二次根式有意义时,被开方数是非负数【解答】解:依题意得:x30,解得x3故选:D【点评】考查了二次根式的意义和性质概念:式子(a0)叫二次根式性质:二次根式中的被开方数必须是非负数,否则二次根式无意义5(4分)如图所示的几何体的俯视图为()ABCD【分析】根据从上边看得到的图形是俯视图,可得答案【解答】解:从上边看外边是正六边形,里面是圆,故选:D【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键6(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()ABCD【分析】
13、让黄球的个数除以球的总个数即为所求的概率【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是故选:C【点评】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比7(4分)已知直线mn,将一块含30角的直角三角板ABC按如图方式放置(ABC=30),其中A,B两点分别落在直线m,n上,若1=20,则2的度数为()A20B30C45D50【分析】根据平行线的性质即可得到结论【解答】解:直线mn,2=ABC+1=30+20=50,故选D【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键8(4分)若一组数据2,3,x,5,7的众数为7,则
14、这组数据的中位数为()A2B3C5D7【分析】根据众数的定义可得x的值,再依据中位数的定义即可得答案【解答】解:数据2,3,x,5,7的众数为7,x=7,则这组数据为2、3、5、7、7,中位数为5,故选:C【点评】本题考查众数与中位数的意义中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数众数是数据中出现最多的一个数9(4分)如图,在RtABC中,A=90,BC=2,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则的长为()ABCD2【分析】连接OE、OD,由切线的性质可知OEAC,ODAB,由于O是BC的中点,从而可知OD
15、是中位线,所以可知B=45,从而可知半径r的值,最后利用弧长公式即可求出答案【解答】解:连接OE、OD,设半径为r,O分别与AB,AC相切于D,E两点,OEAC,ODAB,O是BC的中点,OD是中位线,OD=AE=AC,AC=2r,同理可知:AB=2r,AB=AC,B=45,BC=2由勾股定理可知AB=2,r=1,=故选(B)【点评】本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型10(4分)抛物线y=x22x+m2+2(m是常数)的顶点在()A第一象限B第二象限C第三象限D第四象限【分析】先根据抛物线的顶点式求出抛物线y=x22x+m2+2(m
16、是常数)的顶点坐标,再根据各象限内点的坐标特点进行解答【解答】解:y=x22x+m2+2=(x1)2+(m2+1),顶点坐标为:(1,m2+1),10,m2+10,顶点在第一象限故选A【点评】本题考查的是二次函数的性质及各象限内点的坐标特点,根据题意得出抛物线的顶点坐标是解答此题的关键11(4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EFBC,分别交BD,CD于G,F两点若M,N分别是DG,CE的中点,则MN的长为()A3BCD4【分析】解法一:作辅助线,构建矩形MHPK和直角三角形NMH,利用平行线分线段成比例定理或中位线定理得:MK=FK=1,NP=3,
17、PF=2,利用勾股定理可得MN的长;解法二:作辅助线,构建全等三角形,证明EMFCMD,则EM=CM,利用勾股定理得:BD=6,EC=2,可得EBG是等腰直角三角形,分别求EM=CM的长,利用勾股定理的逆定理可得EMC是等腰直角三角形,根据直角三角形斜边中线的性质得MN的长【解答】解:解法一:如图1,过M作MKCD于K,过N作NPCD于P,过M作MHPM于H,则MKEFNP,MKP=MHP=HPK=90,四边形MHPK是矩形,MK=PH,MH=KP,NPEF,N是EC的中点,PF=FC=BE=2,NP=EF=3,同理得:FK=DK=1,四边形ABCD为正方形,BDC=45,MKD是等腰直角三角
18、形,MK=DK=1,NH=NPHP=31=2,MH=2+1=3,在RtMNH中,由勾股定理得:MN=;解法二:如图2,连接FM、EM、CM,四边形ABCD为正方形,ABC=BCD=ADC=90,BC=CD,EFBC,GFD=BCD=90,EF=BC,EF=BC=DC,BDC=ADC=45,GFD是等腰直角三角形,M是DG的中点,FM=DM=MG,FMDG,GFM=CDM=45,EMFCMD,EM=CM,过M作MHCD于H,由勾股定理得:BD=6,EC=2,EBG=45,EBG是等腰直角三角形,EG=BE=4,BG=4,DM=MH=DH=1,CH=61=5,CM=EM=,CE2=EM2+CM2,
19、EMC=90,N是EC的中点,MN=EC=;故选C【点评】本题考查了正方形的性质、三角形全等的性质和判定、等腰直角三角形的性质和判定、直角三角形斜边中线的性质、勾股定理的逆定理,属于基础题,本题的关键是证明EMC是直角三角形12(4分)一个大矩形按如图方式分割成九个小矩形,且只有标号为和的两个小矩形为正方形,在满足条件的所有分割中若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A3B4C5D6【分析】根据题意结合正方形的性质得出只有表示出矩形的各边长才可以求出面积,进而得出符合题意的答案【解答】解:如图所示:设的周长为:4x,的周长为2y,的周长为2b,即可
20、得出的边长以及和的邻边和,设的周长为:4a,则的边长为a,可得和中都有一条边为a,则和的另一条边长分别为:ya,ba,故大矩形的边长分别为:ba+x+a=b+x,ya+x+a=y+x,故大矩形的面积为:(b+x)(y+x),其中b,x,y都为已知数,故n的最小值是3故选:A【点评】此题主要考查了推理与论证,正确结合正方形面积表示出矩形各边长是解题关键二、填空题(每题4分,满分24分,将答案填在答题纸上)13(4分)实数8的立方根是2【分析】利用立方根的定义即可求解【解答】解:(2)3=8,8的立方根是2故答案2【点评】本题主要考查了立方根的概念如果一个数x的立方等于a,即x的三次方等于a(x3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 浙江省 宁波市 中考 数学试卷 30
限制150内