轴对称——最短路径问题(共5页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《轴对称——最短路径问题(共5页).doc》由会员分享,可在线阅读,更多相关《轴对称——最短路径问题(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 名师堂 校区地址: 南充 咨询电话: 优学小班提分更快、针对更强、时效更高 名师堂学校优学小班讲义 轴对称最短路径问题现在的数学教学遵循标准的理念,以“生活 数学”, “活动 思考”为主线展开课程内容,注重体现生活与数学的联系,其中最短路径问题就是这一方面知识与能力的综合运用,其原型来自于“饮马问题”、“造桥选址问题”,出题背景有角、三角形、平行四边形、坐标轴、抛物线等。下面就对上述类型做一个简单的归纳。例1如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,
2、最短距离是多少米?分析:根据轴对称的性质和“两点之间线段最短”,连接AB,得到最短距离为AB,再根据全等三角形的性质和A到河岸CD的中点的距离为500米,即可求出AB的值AB=1000米故最短距离是1000米例2如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短求:最短距离EP+BP分析:此题中,点E、B的位置就相当于例1中的点A、B,动点P所在有直线作为对称轴相当于例1中的小河。故根据正方形沿对角线的对称性,可得无论P在什么位置,都有PD=PB;故均有EP+BP=PE+PD成立;所以原题可以转化为求PE+PD的最小值问题,分析易得连接DE与AC,
3、求得交点就是要求的点的位置例3如图,XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短分析:此题的出题背景就是角。本题主要利用了两点之间线段最短的性质通过轴对称图形的性质确定三角形的另两点分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,则PM+MN+NP最短例如图,荆州古城河在CC处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD,EE(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADDEEB的路程最短,这个最短路程是多少米?分析:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称 路径 问题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内