2013年浙江省高考数学试卷(理科)(共20页).doc
《2013年浙江省高考数学试卷(理科)(共20页).doc》由会员分享,可在线阅读,更多相关《2013年浙江省高考数学试卷(理科)(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2013年浙江省高考数学试卷(理科)一选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)(2013浙江)已知i是虚数单位,则(1+i)(2i)=()A3+iB1+3iC3+3iD1+i2(5分)(2013浙江)设集合S=x|x2,T=x|x2+3x40,则(RS)T=()A(2,1B(,4C(,1D1,+)3(5分)(2013浙江)已知x,y为正实数,则()A2lgx+lgy=2lgx+2lgyB2lg(x+y)=2lgx2lgyC2lgxlgy=2lgx+2lgyD2lg(xy)=2lgx2lgy4(5分)(2
2、013浙江)已知函数f(x)=Acos(x+)(A0,0,R),则“f(x)是奇函数”是“=”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件5(5分)(2013浙江)某程序框图如图所示,若该程序运行后输出的值是,则()Aa=4Ba=5Ca=6Da=76(5分)(2013浙江)已知,则tan2=()ABCD7(5分)(2013浙江)设ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则()AABC=90BBAC=90CAB=ACDAC=BC8(5分)(2013浙江)已知e为自然对数的底数,设函数f(x)=(ex1)(x1)k(k=1,2),则()A当k=
3、1时,f(x)在x=1处取得极小值B当k=1时,f(x)在x=1处取得极大值C当k=2时,f(x)在x=1处取得极小值D当k=2时,f(x)在x=1处取得极大值9(5分)(2013浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()ABCD10(5分)(2013浙江)在空间中,过点A作平面的垂线,垂足为B,记B=f(A)设,是两个不同的平面,对空间任意一点P,Q1=ff(P),Q2=ff(P),恒有PQ1=PQ2,则()A平面与平面垂直B平面与平面所成的(锐)二面角为45C平面与平面平行D
4、平面与平面所成的(锐)二面角为60二、填空题:本大题共7小题,每小题4分,共28分11(4分)(2013浙江)设二项式的展开式中常数项为A,则A=_12(4分)(2013浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于_ cm313(4分)(2013浙江)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=_14(4分)(2013浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有_种(用数字作答)15(4分)(2013浙江)设F为抛物线C:y2=4x的焦点,过点P(1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点
5、,若|FQ|=2,则直线l的斜率等于_16(4分)(2013浙江)ABC中,C=90,M是BC的中点,若,则sinBAC=_17(4分)(2013浙江)设、为单位向量,非零向量=x+y,x、yR若、的夹角为30,则的最大值等于_三、解答题:本大题共5小题,共72分解答应写出文字说明、证明过程或演算步骤18(14分)(2013浙江)在公差为d的等差数列an中,已知a1=10,且a1,2a2+2,5a3成等比数列()求d,an;() 若d0,求|a1|+|a2|+|a3|+|an|19(14分)(2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,
6、取出蓝球得3分(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数若,求a:b:c20(15分)(2013浙江)如图,在四面体ABCD中,AD平面BCD,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC(1)证明:PQ平面BCD;(2)若二面角CBMD的大小为60,求BDC的大小21(15分)(2013浙江)如图,点P(0,1)是椭圆的一个顶点,C1的长轴是圆的直径l1,l2是过点P且互相垂直的两条直线,其中l1交圆C
7、2于两点,l2交椭圆C1于另一点D(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程22(14分)(2013浙江)已知aR,函数f(x)=x33x2+3ax3a+3(1)求曲线y=f(x)在点(1,f(1)处的切线方程;(2)当x0,2时,求|f(x)|的最大值2013年浙江省高考数学试卷(理科)参考答案与试题解析一选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)(2013浙江)已知i是虚数单位,则(1+i)(2i)=()A3+iB1+3iC3+3iD1+i考点:复数代数形式的乘除运算专题:计算题分析:直接利用两个复数代
8、数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果解答:解:(1+i)(2i)=2+i+2i+1=1+3i,故选B点评:本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题2(5分)(2013浙江)设集合S=x|x2,T=x|x2+3x40,则(RS)T=()A(2,1B(,4C(,1D1,+)考点:交、并、补集的混合运算分析:先根据一元二次不等式求出集合T,然后求得RS,再利用并集的定义求出结果解答:解:集合S=x|x2,RS=x|x2由x2+3x40得:T=x|4x1,故(RS)T=x|x1故选C点评:此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,
9、是高考中常考的题型在求补集时注意全集的范围3(5分)(2013浙江)已知x,y为正实数,则()A2lgx+lgy=2lgx+2lgyB2lg(x+y)=2lgx2lgyC2lgxlgy=2lgx+2lgyD2lg(xy)=2lgx2lgy考点:有理数指数幂的化简求值;对数的运算性质专题:计算题分析:直接利用指数与对数的运算性质,判断选项即可解答:解:因为as+t=asat,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx2lgy,满足上述两个公式,故选D点评:本题考查指数与对数的运算性质,基本知识的考查4(5分)(2013浙江)已知函数f(x)=A
10、cos(x+)(A0,0,R),则“f(x)是奇函数”是“=”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断专题:三角函数的图像与性质分析:=f(x)=Acos(x+)f(x)=Asin(x)(A0,0,xR)是奇函数f(x)为奇函数f(0)=0=k+,kZ所以“f(x)是奇函数”是“=”必要不充分条件解答:解:若=,则f(x)=Acos(x+)f(x)=Asin(x)(A0,0,xR)是奇函数;若f(x)是奇函数,f(0)=0,f(0)=Acos(0+)=Acos=0=k+,kZ,不一定有=“f(x)是奇函数”是“=”必要不
11、充分条件故选B点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用5(5分)(2013浙江)某程序框图如图所示,若该程序运行后输出的值是,则()Aa=4Ba=5Ca=6Da=7考点:程序框图专题:图表型分析:根据已知流程图可得程序的功能是计算S=1+的值,利用裂项相消法易得答案解答:解:由已知可得该程序的功能是计算并输出S=1+=1+1=2若该程序运行后输出的值是,则 2=a=4,故选A点评:本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键6(5分)(2013浙江)已知,则tan2=()ABCD考点:二倍角的正切;同角三角函数间的
12、基本关系专题:三角函数的求值分析:由题意结合sin2+cos2=1可解得sin,和cos,进而可得tan,再代入二倍角的正切公式可得答案解答:解:,又sin2+cos2=1,联立解得,或故tan=,或tan=3,代入可得tan2=,或tan2=故选C点评:本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题7(5分)(2013浙江)设ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则()AABC=90BBAC=90CAB=ACDAC=BC考点:平面向量数量积的运算专题:计算题;平面向量及应用分析:以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,
13、C(a,b),P(x,0),然后由题意可写出,然后由结合向量的数量积的 坐标表示可得关于x的二次不等式,结合二次不等式的知识可求a,进而可判断解答:解:以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(2,0),B(2,0),P0(1,0)=(1,0),=(2x,0),=(ax,b),=(a1,b)恒有(2x)(ax)a1恒成立整理可得x2(a+2)x+a+10恒成立=(a+2)24(a+1)0即=a20a=0,即C在AB的垂直平分线上AC=BC故ABC为等腰三角形故选D点评:本题主要考查了平面向量的运算,向量的模及向量的数量积
14、的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8(5分)(2013浙江)已知e为自然对数的底数,设函数f(x)=(ex1)(x1)k(k=1,2),则()A当k=1时,f(x)在x=1处取得极小值B当k=1时,f(x)在x=1处取得极大值C当k=2时,f(x)在x=1处取得极小值D当k=2时,f(x)在x=1处取得极大值考点:函数在某点取得极值的条件专题:导数的综合应用分析:通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f(1)=0,再验证f(x)在x=1处取得极小值还是极大值即可得结论解答:解:当k=2时,函数f(x)=(ex1)(x1)2求导函数可
15、得f(x)=ex(x1)2+2(ex1)(x1)=(x1)(xex+ex2),当x=1,f(x)=0,且当x1时,f(x)0,当x1时,f(x)0,故函数f(x)在(1,+)上是增函数;在(,1)上是减函数,从而函数f(x)在x=1取得极小值对照选项故选C点评:本题考查了函数的极值问题,考查学生的计算能力,正确理解极值是关键9(5分)(2013浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()ABCD考点:椭圆的简单性质专题:计算题;压轴题;圆锥曲线的定义、性质与方程分析:不妨设|AF1
16、|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率解答:解:设|AF1|=x,|AF2|=y,点A为椭圆C1:+y2=1上的点,2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四边形AF1BF2为矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,设双曲线C2的实轴长为2a,焦距为2c,则2a=,|AF2|AF1|=yx=2,2c=2=2,双曲线C2的离心率e=故选D点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题10(5分)(2013浙江)
17、在空间中,过点A作平面的垂线,垂足为B,记B=f(A)设,是两个不同的平面,对空间任意一点P,Q1=ff(P),Q2=ff(P),恒有PQ1=PQ2,则()A平面与平面垂直B平面与平面所成的(锐)二面角为45C平面与平面平行D平面与平面所成的(锐)二面角为60考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系;二面角的平面角及求法专题:证明题;压轴题;空间位置关系与距离分析:设P1是点P在内的射影,点P2是点P在内的射影根据题意点P1在内的射影与P2在内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且P1Q1P2是二面角l的平面角,根据面面垂直的定义可得平面与平面垂直,得到
18、本题答案解答:解:设P1=f(P),则根据题意,得点P1是过点P作平面垂线的垂足Q1=ff(P)=f(P1),点Q1是过点P1作平面垂线的垂足同理,若P2=f(P),得点P2是过点P作平面垂线的垂足因此Q2=ff(P)表示点Q2是过点P2作平面垂线的垂足对任意的点P,恒有PQ1=PQ2,点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且P1Q1P2是二面角l的平面角P1Q1P2是直角,平面与平面垂直故选:A点评:本题给出新定义,要求我们判定平面与平面所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题二、填空题:本大题共7小题,每小题4分,共28分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 浙江省 高考 数学试卷 理科 20
限制150内