2016年黑龙江省齐齐哈尔市中考数学试卷(共26页).doc
《2016年黑龙江省齐齐哈尔市中考数学试卷(共26页).doc》由会员分享,可在线阅读,更多相关《2016年黑龙江省齐齐哈尔市中考数学试卷(共26页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2016年黑龙江省齐齐哈尔市中考数学试卷(word解析版)一、单项选择题:每小题3分,共30分1(3分)(2016齐齐哈尔)1是1的()A倒数B相反数C绝对值D立方根2(3分)(2016齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()ABCD3(3分)(2016齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个”上面两名同学的议论能反映出的统计量是()A平均数和众数B众数和极差C众数和方差D中位数和极差4(3分)(2016齐
2、齐哈尔)下列算式=3;=9;2623=4;=2016;a+a=a2运算结果正确的概率是()ABCD5(3分)(2016齐齐哈尔)下列命题中,真命题的个数是()同位角相等经过一点有且只有一条直线与这条直线平行长度相等的弧是等弧顺次连接菱形各边中点得到的四边形是矩形A1个B2个C3个D4个6(3分)(2016齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0)设OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()ABCD7(3分)(2016齐齐哈尔)若关于x的分式方程=2的解为正数,则满足条件的正整数m的值为()A1,2,3B1,2C1,3D2,3
3、8(3分)(2016齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A1或2B2或3C3或4D4或59(3分)(2016齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A5个B6个C7个D8个10(3分)(2016齐齐哈尔)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2+bx+c=0的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x
4、0时,y随x增大而增大其中结论正确的个数是()A4个B3个C2个D1个二、填空题:每小题3分,共27分11(3分)(2016齐齐哈尔)某种电子元件的面积大约为0.平方毫米,将0.这个数用科学记数法表示为12(3分)(2016齐齐哈尔)在函数y=中,自变量x的取值范围是13(3分)(2016齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可)14(3分)(2016齐齐哈尔)一个侧面积为16cm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm15(3分)(2016齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切
5、于点D,则C=度16(3分)(2016齐齐哈尔)如图,已知点P(6,3),过点P作PMx轴于点M,PNy轴于点N,反比例函数y=的图象交PM于点A,交PN于点B若四边形OAPB的面积为12,则k=17(3分)(2016齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30,则以它的腰长为边的正方形的面积为18(3分)(2016齐齐哈尔)如图,在边长为2的菱形ABCD中,A=60,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为19(3分)(2016齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上
6、,且OA=2,OC=1在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为三、解答题:共63分20(7分)(2016齐齐哈尔)先化简,再求值:(1),其中x2+2x15=021(8分)(2016齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC的三个顶点的坐标分别为A(1,3),B(4,0),C(0,0)(1)画出将ABC向上平移1个单位长度,再向右平移5个单位长度后得到的A1B1C1;(2)画出将ABC绕原点O
7、顺时针方向旋转90得到A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标22(8分)(2016齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积(结果用含的代数式表示)注:二次函数y=ax2+bx+c(a0)的顶点坐标为(,)23(8分)(2016齐齐哈尔)如图,在ABC中,ADBC,BEAC,垂足分别为D,E,AD与BE相交于点F(1)求证:ACDBFD;(2)当tanABD=1,AC=3
8、时,求BF的长24(10分)(2016齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6x8小时的学生人数占24%根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数25(10分)(2016齐齐哈尔)有一科技小组进行了
9、机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FGx轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米26(12分)(2016齐齐哈尔)如图所示,在平面直角坐
10、标系中,过点A(,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x22x3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由2016年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1(3分)(2016齐齐哈尔)1是1的()A倒数B相反数C绝对值D立方根【分析】根据相反数的定义:只有符号不同的两个
11、数叫互为相反数即a的相反数是a【解答】解:1是1的相反数故选B【点评】主要考查相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0同时涉及倒数的定义,绝对值的性质,立方根的定义的知识点2(3分)(2016齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A、是轴对称图形不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选
12、项错误;C、是轴对称图形不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形故此选项正确故选:D【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合3(3分)(2016齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个”上面两名同学的议论能反映出的统计
13、量是()A平均数和众数B众数和极差C众数和方差D中位数和极差【分析】根据众数和极差的概念进行判断即可【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大4(3分)(2016齐齐哈尔)下列算式=3;=9;26
14、23=4;=2016;a+a=a2运算结果正确的概率是()ABCD【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案【解答】解:=3,故此选项错误;=9,正确;2623=23=8,故此选项错误;=2016,正确;a+a=2a,故此选项错误,故运算结果正确的概率是:故选:B【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算、合并同类项、概率公式等知识,正确掌握相关运算法则是解题关键5(3分)(2016齐齐哈尔)下列命题中,真命题的个数是()同位角相等经过一点有且只有一条直线与这条直线平行长度相等
15、的弧是等弧顺次连接菱形各边中点得到的四边形是矩形A1个B2个C3个D4个【分析】根据平行线的性质对进行判断;根据平行公理对进行判断;根据等弧的定义对进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形【解答】解:两直线平行,同位角相等,所以错误;经过直线外一点有且只有一条直线与这条直线平行,所以错误;在同圆或等圆中,长度相等的弧是等弧,所以选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以正确故选A【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已
16、知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理6(3分)(2016齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0)设OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()ABCD【分析】先用x表示出y,再利用三角形的面积公式即可得出结论【解答】解:点P(x,y)在第一象限内,且x+y=6,y=6x(0x6,0y6)点A的坐标为(4,0),S=4(6x)=122x(0x6),C符合故选C【点评】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围7(3分)(2016齐齐哈尔)若关
17、于x的分式方程=2的解为正数,则满足条件的正整数m的值为()A1,2,3B1,2C1,3D2,3【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案【解答】解:等式的两边都乘以(x2),得x=2(x2)+m,解得x=4m,x=4m2,由关于x的分式方程=2的解为正数,得m=1,m=3,故选:C【点评】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根8(3分)(2016齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A1或2B2或3C3或4D4或5【分析】设该队胜x场,平y
18、场,则负(6xy)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值【解答】解:设该队胜x场,平y场,则负(6xy)场,根据题意,得:3x+y=12,即:x=,x、y均为非负整数,且x+y6,当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解9(3分)(2016齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A5个B6个C7个D8个【分析】由
19、主视图和左视图确定俯视图的形状,再判断最少的正方体的个数【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行1个小正方体,第一列第二行2个小正方体,第二列第三行2个小正方体,其余位置没有小正方体即组成这个几何体的小正方体的个数最少为:1+2+2=5个故选A【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案10(3分)(2016齐齐哈尔)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交
20、点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2+bx+c=0的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x0时,y随x增大而增大其中结论正确的个数是()A4个B3个C2个D1个【分析】利用抛物线与x轴的交点个数可对进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对进行判断;由对称轴方程得到b=2a,然后根据x=1时函数值为负数可得到3a+c0,则可对进行判断;根据抛物线在x轴上方所对应的自变量的范围可对进行判断;根据二次函数的性质对进行判断【解答】解:抛物线与x轴有2个交点,b24ac0,所以正确;抛物线的对称轴
21、为直线x=1,而点(1,0)关于直线x=1的对称点的坐标为(3,0),方程ax2+bx+c=0的两个根是x1=1,x2=3,所以正确;x=1,即b=2a,而x=1时,y0,即ab+c0,a+2a+c0,所以错误;抛物线与x轴的两点坐标为(1,0),(3,0),当1x3时,y0,所以错误;抛物线的对称轴为直线x=1,当x1时,y随x增大而增大,所以正确故选B【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 黑龙江省 齐齐哈尔市 中考 数学试卷 26
限制150内