2015年浙江省高考数学试题及答案(文科)【解析版】(共18页).doc
《2015年浙江省高考数学试题及答案(文科)【解析版】(共18页).doc》由会员分享,可在线阅读,更多相关《2015年浙江省高考数学试题及答案(文科)【解析版】(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2015年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)1(5分)(2015浙江)已知集合P=x|x22x3,Q=x|2x4,则PQ=()A3,4) B (2,3 C (1,2) D(1,3考点:交集及其运算菁优网版权所有专题:集合分析:求出集合P,然后求解交集即可解答:解:集合P=x|x22x3=x|x1或x3,Q=x|2x4,则PQ=x|3x4=3,4)故选:A点评:本题考查二次不等式的解法,集合的交集的求法,考查计算能力2(5分)(2015浙江)某几何体的三视图如
2、图所示(单位:cm),则该几何体的体积是()A8cm3B12cm3CD考点:由三视图求面积、体积菁优网版权所有专题:空间位置关系与距离分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+222=故选:C点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力3(5分)(2015浙江)设a,b是实数,则“a+b0”是“ab0”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断菁优网版权
3、所有专题:简易逻辑分析:利用特例集合充要条件的判断方法,判断正确选项即可解答:解:a,b是实数,如果a=1,b=2则“a+b0”,则“ab0”不成立如果a=1,b=2,ab0,但是a+b0不成立,所以设a,b是实数,则“a+b0”是“ab0”的既不充分也不必要条件故选:D点评:本题考查充要条件的判断与应用,基本知识的考查4(5分)(2015浙江)设,是两个不同的平面,l,m是两条不同的直线,且l,m,()A若l,则B若,则lmC若l,则D若,则lm考点:空间中直线与平面之间的位置关系菁优网版权所有专题:综合题;空间位置关系与距离分析:A根据线面垂直的判定定理得出A正确;B根据面面垂直的性质判断
4、B错误;C根据面面平行的判断定理得出C错误;D根据面面平行的性质判断D错误解答:解:对于A,l,且l,根据线面垂直的判定定理,得,A正确;对于B,当,l,m时,l与m可能平行,也可能垂直,B错误;对于C,当l,且l时,与可能平行,也可能相交,C错误;对于D,当,且l,m时,l与m可能平行,也可能异面,D错误故选:A点评:本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础题目5(5分)(2015浙江)函数f(x)=(x)cosx(x且x0)的图象可能为()ABCD考点:函数的图象菁优网版权所有专题:函数的性质及应用分析:由条件可得函数f(x)为奇函数,故它的图象关
5、于原点对称;再根据在(0,1)上,f(x)0,结合所给的选项,得出结论解答:解:对于函数f(x)=(x)cosx(x且x0),由于它的定义域关于原点对称,且满足f(x)=(x)cosx=f(x),故函数f(x)为奇函数,故它的图象关于原点对称故排除A、B再根据在(0,1)上,x,cosx0,f(x)=(x)cosx0,故排除C,故选:D点评:本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于中档题6(5分)(2015浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且xyz,三种颜色
6、涂料的粉刷费用(单位:元/m2)分别为a,b,c,且abc在不同的方案中,最低的总费用(单位:元)是()Aax+by+czBaz+by+cxCay+bz+cxDay+bx+cz考点:函数的最值及其几何意义菁优网版权所有专题:函数的性质及应用分析:作差法逐个选项比较大小可得解答:解:xyz且abc,ax+by+cz(az+by+cx)=a(xz)+c(zx)=(xz)(ac)0,ax+by+czaz+by+cx;同理ay+bz+cx(ay+bx+cz)=b(zx)+c(xz)=(zx)(bc)0,ay+bz+cxay+bx+cz;同理az+by+cx(ay+bz+cx)=a(zy)+b(yz)=
7、(zy)(ab)0,az+by+cxay+bz+cx,最低费用为az+by+cx故选:B点评:本题考查函数的最值,涉及作差法比较不等式的大小,属中档题7(5分)(2015浙江)如图,斜线段AB与平面所成的角为60,B为斜足,平面上的动点P满足PAB=30,则点P的轨迹是()A直线B抛物线C椭圆D双曲线的一支考点:圆锥曲线的轨迹问题菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:根据题意,PAB=30为定值,可得点P的轨迹为一以AB为轴线的圆锥侧面与平面的交线,则答案可求解答:解:用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线此题
8、中平面上的动点P满足PAB=30,可理解为P在以AB为轴的圆锥的侧面上,再由斜线段AB与平面所成的角为60,可知P的轨迹符合圆锥曲线中椭圆定义故可知动点P的轨迹是椭圆故选:C点评:本题考查椭圆的定义,考查学生分析解决问题的能力,比较基础8(5分)(2015浙江)设实数a,b,t满足|a+1|=|sinb|=t()A若t确定,则b2唯一确定B若t确定,则a2+2a唯一确定C若t确定,则sin唯一确定D若t确定,则a2+a唯一确定考点:四种命题菁优网版权所有专题:简易逻辑分析:根据代数式得出a2+2a=t21,sin2b=t2,运用条件,结合三角函数可判断答案解答:解:实数a,b,t满足|a+1|
9、=t,(a+1)2=t2,a2+2a=t21,t确定,则t21为定值sin2b=t2,A,C不正确,若t确定,则a2+2a唯一确定,故选:B点评:本题考查了命题的判断真假,属于容易题,关键是得出a2+2a=t21,即可判断二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9(6分)(2015浙江)计算:log2=,2=考点:对数的运算性质菁优网版权所有专题:函数的性质及应用分析:直接利用对数运算法则化简求值即可解答:解:log2=log2=;2=3故答案为:;点评:本题考查导数的运算法则的应用,基本知识的考查10(6分)(2015浙江)已知an是等差数列,公差d不为零,若a
10、2,a3,a7成等比数列,且2a1+a2=1,则a1=,d=1考点:等比数列的性质菁优网版权所有专题:等差数列与等比数列分析:运用等比数列的性质,结合等差数列的通项公式,计算可得d=a1,再由条件2a1+a2=1,运用等差数列的通项公式计算即可得到首项和公差解答:解:由a2,a3,a7成等比数列,则a32=a2a7,即有(a1+2d)2=(a1+d)(a1+6d),即2d2+3a1d=0,由公差d不为零,则d=a1,又2a1+a2=1,即有2a1+a1+d=1,即3a1a1=1,解得a1=,d=1故答案为:,1点评:本题考查等差数列首项和公差的求法,是基础题,解题时要认真审题,注意等差数列和等
11、比数列的性质的合理运用11(6分)(2015浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,最小值是考点:二倍角的余弦;三角函数的最值菁优网版权所有专题:三角函数的图像与性质分析:由三角函数恒等变换化简解析式可得f(x)=sin(2x)+,由正弦函数的图象和性质即可求得最小正周期,最小值解答:解:f(x)=sin2x+sinxcosx+1=+sin2x+1=sin(2x)+最小正周期T=,最小值为:故答案为:,点评:本题主要考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查12(6分)(2015浙江)已知函数f(x)=,则f(f(2)=,f(x)的
12、最小值是26考点:函数的最值及其几何意义菁优网版权所有专题:函数的性质及应用分析:由分段函数的特点易得f(f(2)=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得解答:解:由题意可得f(2)=(2)2=4,f(f(2)=f(4)=4+6=;当x1时,f(x)=x2,由二次函数可知当x=0时,函数取最小值0;当x1时,f(x)=x+6,由基本不等式可得f(x)=x+626=26,当且仅当x=即x=时取到等号,即此时函数取最小值26;260,f(x)的最小值为26故答案为:;26点评:本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题13(4分)(2015浙江)已知1,2是平
13、面向量,且12=,若平衡向量满足1=1,则|=考点:平面向量数量积的性质及其运算律菁优网版权所有专题:平面向量及应用分析:根据数量积得出1,2夹角为60,1=,2=30,运用数量积的定义判断求解即可解答:解:1,2是平面单位向量,且12=,1,2夹角为60,平衡向量满足1=1与1,2夹角相等,且为锐角,应该在1,2夹角的平分线上,即,1=,2=30,|1cos30=1,|=故答案为:点评:本题简单的考查了平面向量的运算,数量积的定义,几何图形的运用,属于容易题,关键是判断夹角即可14(4分)(2015浙江)已知实数x,y满足x2+y21,则|2x+y4|+|6x3y|的最大值是15考点:简单线
14、性规划菁优网版权所有专题:不等式的解法及应用分析:由题意可得2x+y40,6x3y0,去绝对值后得到目标函数z=3x4y+10,然后结合圆心到直线的距离求得|2x+y4|+|6x3y|的最大值解答:解:如图,由x2+y21,可得2x+y40,6x3y0,则|2x+y4|+|6x3y|=2xy+4+6x3y=3x4y+10,令z=3x4y+10,得,如图,要使z=3x4y+10最大,则直线在y轴上的截距最小,由z=3x4y+10,得3x+4y+z10=0则,即z=15或z=5由题意可得z的最大值为15故答案为:15点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方
15、法,是中档题15(4分)(2015浙江)椭圆+=1(ab0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是考点:椭圆的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可解答:解:不妨令c=1,设Q(m,n),由题意可得,即:,由可得:m=,n=,代入可得:,解得e2(4e44e2+1)+4e2=1,可得,4e6+e21=0即4e62e4+2e4e2+2e21=0,可得(2e21)(2e4+e2+1)=0解得e=故答案为:点评:本题考查椭圆的方程简单性质的应用,考查对称知识以及计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析版 2015 浙江省 高考 数学试题 答案 文科 解析 18
限制150内