培优专题7-分式的运算(共20页).doc
《培优专题7-分式的运算(共20页).doc》由会员分享,可在线阅读,更多相关《培优专题7-分式的运算(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上10、分式的运算【知识精读】 1. 分式的乘除法法则 ; 当分子、分母是多项式时,先进行因式分解再约分。 2. 分式的加减法 (1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。 求最简公分母是通分的关键,它的法则是: 取各分母系数的最小公倍数; 凡出现的字母(或含有字母的式子)为底的幂的因式都要取; 相同字母(或含有字母的式子)的幂的因式取指数最高的。 (2)同分母的分式加减法法则 (3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。 3. 分式乘方的法则 (n为正整数) 4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,
2、函数等方面有重要应用。学习时应注意以下几个问题: (1)注意运算顺序及解题步骤,把好符号关; (2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式; (3)运算中及时约分、化简; (4)注意运算律的正确使用; (5)结果应为最简分式或整式。下面我们一起来学习分式的四则运算。【分类解析】 例1:计算的结果是( ) A. B. C. D. 分析:原式 故选C 说明:先将分子、分母分解因式,再约分。 例2:已知,求的值。 分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。 解:原式 例3:已知:,求下式的值: 分析:本题先化简,然后代入
3、求值。化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。这是解决条件求值问题的一般方法。 解: 故原式 例4:已知a、b、c为实数,且,那么的值是多少? 分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。 解:由已知条件得: 所以 即 又因为 所以 例5:化简: 解一:原式 解二:原式 说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。因此,解题时注意审题,仔细
4、观察善于抓住题目的特征,选择适当的方法。 例1、计算: 解:原式 说明:分式运算时,若分子或分母是多项式,应先因式分解。 例2、已知:,则_。 解: 说明:分式加减运算后,等式左右两边的分母相同,则其分子也必然相同,即可求出M。中考点拨: 例1:计算: 解一:原式 解二:原式 说明:在分式的运算过程中,乘法公式和因式分解的使用会简化解题过程。此题两种方法的繁简程度一目了然。 例2:若,则的值等于( ) A. B. C. D. 解:原式 故选A【实战模拟】 1. 已知:,则的值等于( ) A. B. C. D. 2. 已知,求的值。3. 计算:4. 若,试比较A与B的大小。 5. 已知:,求证:
5、。【试题答案】 1. 解: 故选B 2. 解: 说明:此题反复运用了已知条件的变形,最终达到化简求值的目的。 3. 解:原式 说明:本题逆用了分式加减法则对分式进行拆分,简化计算。 4. 解:设,则 5. 证明: ,即 又 均不为零 12、分式方程及其应用【知识精读】 1. 解分式方程的基本思想:把分式方程转化为整式方程。 2. 解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程; (3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。 3
6、. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。 下面我们来学习可化为一元一次方程的分式方程的解法及其应用。【分类解析】 例1. 解方程: 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根 解:方程两边都乘以,得 例2. 解方程 分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。 解:原方程变形为: 方程两边通分,得
7、经检验:原方程的根是 例3. 解方程: 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。 解:由原方程得: 即 例4. 解方程: 分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。 解:原方程变形为: 约分,得 方程两边都乘以 注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。因此要学会根据方程结构特点,用特殊方法解分式方程。5、中考题解: 例1若解分式方程产生增根,则m的值是( ) A. B. C. D. 分析:分式方程产生的增根,是使分母为零的未知数的值。由题意得增根是:化简原方程为:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 分式 运算 20
限制150内