下面介绍几种小学数学中常用的思想方法(共10页).doc
《下面介绍几种小学数学中常用的思想方法(共10页).doc》由会员分享,可在线阅读,更多相关《下面介绍几种小学数学中常用的思想方法(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上下面介绍几种小学数学中常用的思想方法符号思想 用符号化的语言(包括字母、数字元、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表像再抽象符号化的过程。 用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。 在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息,如乘法分配律(ab)cacbc;又如在“
2、有余数的除法”教学中,最后出现一道思考题:“六一”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室。你能知道第24个气球是什么颜色的吗?解决这个问题可以用书写简便的字母a、b、c分别表示红、黄、蓝气球,则按照题意可以转化成如下符号形式:aaabbc aaabbc aaabbc从而可以直观地找出气球的排列规律并推出第24个气球是蓝色的。这是符号思想的具体体现。化归思想 化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。一般是指不可逆向的“变换”。它的基本形式有:化难为易,化生为熟,化繁
3、为简,化整为零,化曲为直等。如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。分解思想 分解思想就是先把原问题分解为若干便于解决的子问题,分解出若干便于求解的范围,分解出若干便于层层推进的解题步骤,然后逐个加以解决并达到最后顺利解决原问题的目的的一种思想方法。如在五年级解决问题的策略教学中“倒退着想”的解题策略就体现了这种思想。转换思想 转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换。在解决数学问题时,转换是一种非常有用的策略。 对问题进行转换时,既可转换已知条件,也可转换问
4、题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。如果采用等价关系作转换,可直接求出解而省略反演这一步。 如计算:2.8113170.7,直接计算比较麻烦,而分数的乘除运算比小数方便,故可将原问题转换为:28/103/47/110/7,这样,利用约分就能很快获得本题的解。 再如:某班上午缺席人数是出席人数的1/7,下午因有1人请病假,故缺席人数是出席人数的1/6。问此班有多少人?此题因上下午出席人数起了变化,解题遇到了困难。如将上午缺席人数转换成是全班人数的1/7 1=1/8,下午
5、缺席人数是全班人数的1/6 1=1/7,这样,很快发现其本质关系:1/7与1/8的差是由于缺席1人造成的,故全班人数为:1(1/7-1/8)=56(人)。极限思想 事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变。 教学“圆的面积和周长”中,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式,还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。 战国时代的庄子天下篇中的“一尺之棰,日取其半,万世不竭。”充满了极限思想。古代杰出的数学家刘徽的“割圆术”就是利用极限思想来求得圆的周长的,他首先作圆内接正多边形,当多边形的边数越多时
6、,多边形的周长就越接近于圆的周长。刘徽总结出:“割之弥细,所失弥少。割之又割以至于不可割,则与圆合体无所失矣。”正是用这种极限的思想,刘徽求出了,即“徽率”。 现行小学教材中有许多处注意了极限思想的渗透:在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想。在循环小数这一部分内容,在教学 1 3 = 0。333是一循环小数,它的小数点后面的数字是写不完的,是无限的。在直线、射线、并行线的教学时,可让学生体会线的两端是可以无限延长的。演绎思想: 演绎也是理智的活动,但是和直观不同,它们不是理智的单纯活动,必须先假
7、定了某些真理(或定义)之后,然后再凭借这些定义推出一些结论。譬如:我们知道了三角形的定义和定理之后,可以推出一个三角形内角的总和等于两直角之和。所以直观的功用是在于提供科学和哲学的最新原则。而演绎则是应用这些原则来建立一些定理和命题。演绎并不要求像直观所拥有的那种直接呈现出来的证明,它的确实性在某种程度上宁可说是记忆赋予它的。它通过一系列的间接论证就能得出结论,这就像我们握着一根长链条的第一节就可以认识它的最后一节一样。 这就是说,直观是发明的基本原则,演绎是导致最基本的结论。不过也有哲学家认为演绎是有缺陷的,因为由同一个 原则往往会演绎出不同的结论,所以应当有另一个方法来纠正它。这个纠正的方
8、法就是经验,即所谓的诉诸事实。总之,直观就是找到最简单、最无可怀疑、最无须辩护的人类知识元素,即发现最简单和最可靠的观念或原理。然后对它们进行演绎推理,导出全部确实可靠的解决方案。 例如数学定理证明就是一种演绎推理模型思想 是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。 培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。 数学模型方法不仅是处理纯数学问题的一种经典方法,而且也是处理自然科学、社会科学、工程技术和社会
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 下面 介绍 小学 数学 常用 思想 方法 10
限制150内