2018年中考数学精品专题26三角形(共14页).doc
《2018年中考数学精品专题26三角形(共14页).doc》由会员分享,可在线阅读,更多相关《2018年中考数学精品专题26三角形(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2018年中考数学备考精品考点二十六:三角形 聚焦考点温习理解一、三角形 1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形当已知两边时,可确定第三边的范围
2、。证明线段不等关系。学科!网3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。二、全等三角形 1、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简
3、写成“边边边”或“SSS”)。来源:Zxxk.Com直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)2.全等三角形的性质:三、等腰三角形1、等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60。2、等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也
4、相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60的等腰三角形是等边三角形。推论3:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。3、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。名师点睛典例分类考点典例一、三角形的性质【例1】(2017郴州第8题)小明把一副的直角三角板如图摆放,其中,则等于 ( )A B C D【答案】B考点:三角形的外角的性质.【点睛】本题考查了三角形的外角的性质,利用三角形的外角的性质
5、:三角形的外角等于和它不相邻的两个内角的和,可解决有关角的计算问题【例2】(2017贵州遵义第10题)如图,ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则AFG的面积是()A4.5B5C5.5D6【答案】A.【解析】试题分析:点D,E,F,G分别是BC,AD,BE,CE的中点,AD是ABC的中线,BE是ABD的中线,CF是ACD的中线,AF是ABE的中线,AG是ACE的中线,AEF的面积=ABE的面积=ABD的面积=ABC的面积=,同理可得AEG的面积=,BCE的面积=ABC的面积=6,又FG是BCE的中位线,EFG的面积=BCE的面积=,AFG的面积是3=,来源:
6、学+科+网Z+X+X+K故选:A考点:三角形中位线定理;三角形的面积【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用【举一反三】1.(2017甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若1=45,则2为()A115B120C135D1452.(2017湖南张家界第5题)如图,D,E分别是ABC的边AB,AC上的中点,如果ADE的周长是6,则ABC的周长是()A6B12C18D24考点典例二、等腰三角形【例3】(2017湖北武汉第10题)如图,在中,以的一边为边画等腰三角形,使得它
7、的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A4 B5 C 6 D7【答案】C【解析】故选C.考点:等腰三角形.【点睛】本题考查了画等腰三角形;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论【举一反三】1. (2017海南第13题)已知ABC的三边长分别为4、4、6,在ABC所在平面内画一条直线,将ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条A3B4C5D62.(2016湖南湘西州第14题)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A13cm
8、 B14cm C13cm或14cm D以上都不对考点典例三、全等三角形【例4】(2017湖南怀化第15题)如图,请你添加一个适当的条件:,使得.学科+网【答案】CE=BC本题答案不唯一【解析】试题解析:添加条件是:CE=BC,在ABC与DEC中,ABCDEC故答案为:CE=BC本题答案不唯一点:全等三角形的判定【点睛】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理【举一反三】(2017湖南怀化第6题)如图,点在一条直线上,写出与之间的关系,并证明你的结论 考点典例四、相似三角形【例5】(2017哈尔滨第9题)如图,在中,分别为边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 数学 精品 专题 26 三角形 14
限制150内