不等式与不等式组知识点与练习.doc
《不等式与不等式组知识点与练习.doc》由会员分享,可在线阅读,更多相关《不等式与不等式组知识点与练习.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上不等式与不等式组一、知识结构图 二、知识要点(一、)不等式的概念 1、不等式:一般地,用不等符号(“”“”“”“”)表示大小关系的式子,叫做不等式,用“”表示不等关系的式子也是不等式。不等号主要包括: 、 、 、 、 。2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。4、解不等式:求不等式的解集的过程,叫做解不等式。5、不等式的解集可以在数轴上表示,分三步进行:画数轴定界点定方向。规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用
2、实心圆点,不等于用空心圆圈。(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。用字母表示为:如果,那么;如果,那么 ;不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。用字母表示为: 如果,那么(或);如果,不等号那么(或);不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。用字母表示为: 如果,那么(或);如果,那么(或);解不等式思想就是要将不等式逐步转化为xa或xa的形式。(注:传递性:若ab,bc,则ac. 利用不等式的基本性质可以解简单的不等式)(三、)一元一次不
3、等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2、任何一个一元一次不等式都可以化为最简形式:或(a0)的形式。3、解一元一次不等式的一般步骤:去分母;去括号;移项;合并同类项; 系数化为1(特别要注意不等号方向改变的问题) 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。(四、)一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。不等式组中含有一个未知数,并且所含未知数的项的次数都是1。2、使不等式组中的每个不等式都成立的未知
4、数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。3、不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。5、一元一次不等式组的解法:解一元一次不等式组的一般步骤:分别求出这个不等式组中各个不等式的解集;利用数轴表示出各个不等式的解集;找出公共部分;用不等式表示出这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。6、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,
5、大小小大取中间,大大小小无处找。(五、)一元一次不等式(组)的应用一般方法步骤:(1)审:分析题意,找出不等关系;(2)设:设未知数;(3)列:列出不等式组;(4)解:解不等式组;(5)检验:从不等式组的解集中找出符合题意的答案;(6)答:写出问题答案。1、不等式与不等式组不等式: 用符号,=,号连接的式子叫不等式。 不等式的两边都加上或减去同一个整式,不等号的方向不变。 不等式的两边都乘以或者除以一个正数,不等号方向不变。 不等式的两边都乘以或除以同一个负数,不等号方向相反。2、不等式的解集: 能使不等式成立的未知数的值,叫做不等式的解。 一个含有未知数的不等式的所有解,组成这个不等式的解集
6、。 求不等式解集的过程叫做解不等式。3、一元一次不等式: 左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。4、一元一次不等式组: 关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 求不等式组解集的过程,叫做解不等式组。5、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了6、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,小小、大大无处找7、 由两个一元一次不等
7、式组成的不等式组的解集通常有如下四种类型(其中ab)不等式组数轴表示解集顺口溜xbxaxb大大取较大xbxaxa小小取较小xaaxb大小、小大中间找xbxa无解大大、小小解不了练习题一1已知不等式3x-a0的正整数解恰是1,2,3,则a的取值范围是 。2已知关于x的不等式组无解,则a的取值范围是 。3不等式组的整数解为 。4如果关于x的不等式(a-1)xa+5和2x4的解集相同,则a的值为 。5已知关于x的不等式组的解集为,那么a的取值范围是 。6当 时,代数式的值不大于零7.若”“=”或“”号填空)8.不等式,的正整数解是 9.不等式的解集为,则不等式组的解集是 11.若不等式组的解集是,则
8、的值为 12.有解集,则的取值范围是 练习题二一、 判断题(每题1分,共6分)1、 ab,得ambm ( )2、 由a3,得a ( )3、 x = 2是不等式x34的解 ( )4、 由1,得a ( )5、 如果ab,c0,则ac2bc2 ( )6、 如果ab0,则1 ( )二、 填空题(每题2分,共34分)1、若ab,用“”号或“”号填空:a5 b5; ;12a 12b;6a 6b;2、x与3的和不小于6,用不等式表示为 ;3、当x 时,代数式2x3的值是正数;4、代数式2x的不大于8的值,那么x的正整数解是 ;5、如果x75,则x ;如果0,那么x ;6、不等式axb的解集是x,则a的取值范
9、围是 ;7、一个长方形的长为x米,宽为50米,如果它的周长不小于280米,那么x应满足的不等式为 ;练习题三一、选择题1下列不等式组中,是一元一次不等式组的是( ) A B C D2下列说法正确的是( ) A不等式组的解集是5x3 B的解集是3x2 C的解集是x=2 D的解集是x33不等式组的最小整数解为( ) A1 B0 C1 D44在平面直角坐标系中,点P(2x6,x5)在第四象限,则x的取值范围是( ) A3x5 B3x5 C5x3 D5x2 Bx3 C2x3 D无解二、填空题6若不等式组有解,则m的取值范围是_7已知三角形三边的长分别为2,3和a,则a的取值范围是_8将一筐橘子分给若干
10、个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_个儿童,分_个橘子9若不等式组的解集是1x1,则(a+b)2006=_三、解答题10解不等式组(1) (2)11若不等式组无解,求m的取值范围12、若关于x的不等式组无解,则a的取值范围是_13、已知关于x的不等式组的整数解共有5个,则 a的取值范围是_易错点分析:易错点1:误认为一元一次不等式组的“公共部分”就是两个数之间的部分例1 解不等式组错解:由,得x1,由,得x2,所以不等式组的解集为2x1错因剖析:解一元一次不等式组的方法是先分别求出不等式组中各个不等式的解集,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式 知识点 练习
限制150内