2005年考研数学二真题解析(共12页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2005年考研数学二真题解析(共12页).doc》由会员分享,可在线阅读,更多相关《2005年考研数学二真题解析(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,则 = .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: =,于是 ,从而 =方法二: 两边取对数,对x求导,得 ,于是 ,故 =(2) 曲线的斜渐近线方程为.【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a= ,于是所求斜渐近线方程为(3) .【分析】 作三角代换求积分即可.【详解】 令,则 =(4) 微分方程满足的解为.【分析】直接套用一阶线性微分方程的
2、通解公式: ,再由初始条件确定任意常数即可.【详解】 原方程等价为,于是通解为 =,由得C=0,故所求解为(5)当时,与是等价无穷小,则k= .【分析】 题设相当于已知,由此确定k即可.【详解】 由题设, =,得(6)设均为3维列向量,记矩阵 , 如果,那么 2 .【分析】 将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 =,于是有 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数,则f(x)在内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两
3、个不可导点. (D) 至少有三个不可导点. C 【分析】 先求出f(x)的表达式,再讨论其可导情形.【详解】 当时,; 当时,;当时,即 可见f(x)仅在x=时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有(A) F(x)是偶函数f(x)是奇函数. (B) F(x)是奇函数f(x)是偶函数.(C) F(x)是周期函数f(x)是周期函数. (D) F(x)是单调函数f(x)是单调函数. A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为,且当F(x)为偶函数时,有,于是,即 ,
4、也即,可见f(x)为奇函数;反过来,若f(x)为奇函数,则为偶函数,从而为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=, 排除(D); 故应选(A).(9)设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是 (A) . (B) . (C) . (D) . A 【分析】 先由x=3确定t的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有,得(舍去,此时y无意义),于是 ,可见过点x=3(此时y=ln2)的法线方程为: ,令y=
5、0, 得其与x轴交点的横坐标为:, 故应(A).(10)设区域,f(x)为D上的正值连续函数,a,b为常数,则(A) . (B) . (C) . (D) . D 【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 = = 应选(D).(11)设函数, 其中函数具有二阶导数, 具有一阶导数,则必有 (A) . (B) .(C) . (D) . B 【分析】 先分别求出、,再比较答案即可.【详解】 因为, ,于是 , , ,可见有,应选(B).(12)设函数则(A) x=0,x=1都是f(x)的第一类间断点. (B) x=0
6、,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. D 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ,所以x=0为第二类间断点; ,所以x=1为第一类间断点,故应选(D).(13)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . B 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2005 考研 数学 题解 12
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内