重力仪原理与结构解析(共25页).doc
《重力仪原理与结构解析(共25页).doc》由会员分享,可在线阅读,更多相关《重力仪原理与结构解析(共25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2.重力勘查的仪器 从原理上说,凡是与重力有关的物理现象都可以用于设计制造重力仪器,并用它们来测定出重力全值1071019量级变化,因此要求重力仪要有高敏度、高精度等良好性能。2.1重力仪基本原理根据测量的物理量的不同,重力测量分为动力法和静力法两大类,动力法观测的是物体的运动状态(时间与路径),用以测定重力的全值,即绝对重力值(早期的摆仪也可用于相对测量);静力法则是观测物体在重力作用下静力平衡位置的变化。以测量两点间的重力差,称相对重力测定,重力仪是一种精密、贵重的仪器。2.1.1绝对重力测量仪器绝对重力测量的简单原理是利用自由落体的运动规律,在固定或移动点上测量
2、时有单程下落和上抛下落两种行程,自由落体为一光学棱镜,利用稳定的氦氨激光束的波长作为迈克尔逊(michelson)干涉仪的光学尺,直接测量空间距离:时间标准是采用高稳定的石英振荡器与天文台原子频率指标对比。观测时,仍然还有许多干扰因素影响重力值的精度测定,如大地脉动、真空度、落体下落偏摆等等,因此必须加以分析、控制和校正。1) 自由下落单程观测图2.1表示自由落体在真空中的下落,其质心在时刻t1、t2、t3相对经过的位置分别为h1、h2、h3,时间间隔为T1、T2,经过的距离为S1、S2 ,则由自由落体运动方程式最后可导出重力值的公式: (2.1.1) 精确测定S1、S2是采用迈克尔逊干涉仪的
3、原理,当物体光心在光线方向上移动半波长()时 ,干涉条纹就产生一次明暗变化,显示干涉条纹数目直接代表下落距离(,N为半干涉条纹数)。这些干涉条纹信号由光电倍增管接受,转化成电信号,放大后与来自石英振荡器的标准频率信号同时送入高精度的电子系统,以便计算时间间隔与条纹数目,从而精确到S1、S2、T1、T2。2)上抛下落双程观测上抛下落对观测可避免残存空气阻力、时间测定、电磁等影响带来的误差,物体被铅垂上抛后,其质量中心所走的路程先铅垂向上而后下,其时间与距离的关系如图2.2。 图2.1 自由下落单程绝对重力测量示意图 图2.2 上抛下落双程绝对重力测量示意图 图2.3 上抛下落棱镜的光程图中c和c
4、、B和B、A和A在空间都是一点。 从运动学公式可以导出 (2.1.2)式中 T2=t4t1,T1=t3t2,S=hChB。上抛下落光程如图2.3所示,用以抛射运动棱镜的机件必须使该棱镜上抛时,平移与旋转角不超过一定限度。绝对重力测量的准确性是一项复杂精细的工作,它有赖于几种物理量的精密测定,涉及到光学、电子学和精密机械的有关技术。我国是为数不多的能生产绝对重力测量仪器的国家之一。80年代中期研制的单程下落可移式仪器在国际对比中,准确度为0.14g.u.,世界上最先进的可移式上抛法仪器,其准确度约为0.05g.u.。这类仪器重达数百公斤,安装、调试、测定是一项十分复杂的工作。国家计量科学院从19
5、64年开始研制下落式绝对重力仪,1979年制成准确度为1g.u.的固定式仪器。1980年制成NIM-I型可移式仪器,准确度为0.2g.u。1985年制成NIM-型,NIM-型可移式仪器,准确度为0.14g.u。目前世界上最先进的可移式仪器为法国和意大利的产品,均采用上抛法,准确度为0.05g.u。MICROG_LACOSTE公司生产的A10 绝对重力仪是唯一可用于流动测量的绝对重力仪在国际单位制中,1m/s2=106 g.u在以前的资料中,也用伽作单位,1gal(伽)=1cm/s2 1gal =104g.u2.1.2相对重力测量仪器概述 用于重力勘探工作中的重力仪,都是相对重力测量仪器,即只能
6、测出某两点之间的重力差,由于重力差比重力全值小几个数量级以上,因而要使用测量值达(10.0n)g.u.精度,其相对精度就比绝对重力仪小得多了,这样使仪器轻便,小型化就较为实现,但即便如此,为能正确反映重力极微小的变化,在仪器设计、材料选取、各种干扰的消除等方面仍非易事。1) 工作原理 一个恒定的质量m在重力场内的重量随g的变化而变化,如果用另一种力(弹力,电磁力等)来平衡这中重量或重力矩的变化,则通过对物体平衡状态的观测,就有可能测量出两点间的重力差值,按物体受重力变化而产生位移方式的不同,重力仪可分为平移(或线位移)式或旋转(或角位移)式两大类。日常生活中使用的弹簧称从原理上说就是一种平移式
7、重力仪。设弹簧的原始长度为S0,弹力系数为k,挂上质量为m的物体后其重量为mg,当由弹簧的形变产生的弹簧与重量大小相等(方向相反)时,重物静止在某一平衡位置上,此时有 mg =k(SS0) (2.1.3)式中S为平衡时弹簧的长度,若将系统分别置于重力值为g1和g2的两个点上,弹簧形变后的长度为S1和S2,可类似得到上述两个方程,将它么们相减便有 (2.1.4) 系数C称为格值,因此测得重物的位移量就可以换算出重力差。将上式全微分后并除以该式,可得到相对误差表达式 (2.1.5) 设g=1000u,dg取0.1g.u.。则相对误差为104,平均地说,对格值与S测定的相对误差不能超过0.5104,
8、可见要求实施是相当困难的。2)构造上的基本要求不同类型重力仪尽管结构上差异很大,但任何一台重力仪都有两个基本的部分:一是静力平衡系统,又叫灵敏系统,用来感受重力的变化,因而是仪器的“心脏”;二是测读机构,用来观测平衡系统的微小变化并测量出重力变化,对前者来说。系统必须具备足够高的灵敏度以便能准确地感受到重力的微小变化,对后者来说,应有足够大的放大能力以分辨出灵敏系统的微小变化,同时测量重力变化的范围较大,读数与重力变化间的换算要简单。 图2.5旋转式重力仪灵敏系统对弹簧称式重力仪的分析:全值重力场下(=107g.u.),弹簧伸长10cm一个半径为50m,中心埋深100m,剩余密度0.5g/cm
9、3的球体在中心上方的最大重力异常2g.u.,该异常引起的弹簧长度变化2*10-6mm.可见重力仪要灵敏地感受这一微小变化,并测出这一变化需要在仪器结构上进行精心的设计。图2.6 弹簧式重力仪灵敏系统结构示意图2) 平衡方程式与灵敏度 简化了的旋转式弹性重力仪中灵敏系统如图2.5 所示,1为带重荷m的摆杆(亦称平衡体),它与杆3骨节为一体,可绕旋转轴o转动,此旋转轴可为一对水平扭丝或水平扭转弹簧。2称为主弹簧,上端固定,下端与支杆3相连。这样,-平衡体在重力矩和弹力矩的作用下可在某一位置达到平衡(静止),设Mg表示平衡体所受的重力矩,它是重力g与平衡体偏离水平位置为角的函数;M,表示平衡体受到的
10、弹力矩,是角的函数的函数,在平衡体静止时,合力矩M0为零,即 M0=Mg(g,)+M()= 0 (2.1.6)这就是重力仪的基本平衡方程式,从该式出发我们来讨论角灵敏度问题。 所谓角灵敏度,是指单位重力变化所能引起平衡体偏角的大小,如果偏角越大,则表示仪器越灵敏,即叫灵敏度大,反之亦然。将式(2.1.6)对g和进行微分得到 (2.1.7)稍加整理既获得角灵敏度的表达式 (2.1.8) 因此,从原理上说,提高灵敏度有两个途径:一是加大上式中的分子,这意味着要增大m和L(L为平衡体质心到转轴o的距离),其结果是会增大仪器的重量和体积,也同时会使各种干扰因素的影响加大,这是不可取的;二是减少上式中的
11、分母,其物理意义为减少平衡系统的稳定性。根据力学中的三种平稳状态的表示为:0时为稳定平衡,=0时为随遇平衡,0时为不稳定平衡,因此,让式(2.1.8)中的分母小于零的方向趋近于零而不等于零,既是减少系统的稳定性,但又不使其达到不稳定性状态,使灵敏度达到我们所需要的范围。为实现这一要求,可采取加助动装置(亦称敏化)方法、倾斜观测法以及适当主弹簧位置等方法。图2.1-4中的主弹簧连在支杆上的布局,本身就是起到了自动助动作用,随着角的减小,灵敏度会逐渐增大。图2.7 灵敏系统的稳定性示意图这个条件就物理意义来说,就是设计和制造重力仪时,设法减小灵敏系统的稳定性,但又不使其达到不稳定状态,如图27。假
12、设图中(a),(b),(c)中M与接触面间的摩擦系数是相等的。尽管M均处在平衡状态,显然因27c中的M稳定性很差,当有很小的水平方向的外力作用时,质块M就会产生较大的位移。为了达到敏化平衡体的目的通常用增加敏化装置的方法,以便使灵敏系统满足敏化条件。也可用适当布置弹簧法。测读机构与零点读数法由于重力的变化所能引起平衡体的偏转角的改变量十分的微小,肉眼无法判别,因此为能观察出这一微小的变化,测读机首先要有一套具有足够放大能力的放大机构,如光学放大、光点放大和电容放大等;其次应有一套测读机构,如测微记数器,或自动记录系统等,将平衡体角位移改变量测读出来,以换算出重力变化量。现代重力仪的测读都是采用
13、补偿法进行的,也称零点读数法,其含意是:选取平衡器的某一位置作为测量重力变化的起始,即零点位置,重力变化后,第一步是通过放大装置观测平衡体对零点位置的偏离情况;第二步是用另外的力去补偿重力的变化,即通过放大装置将平衡体又准确地调回到零点位置,测微器上前后两个读数的变化就反映了重力的变化。采用零点读数法有许多优点;扩大了直接测量范围,减小了仪器的体积,测读精度高,以相同的灵敏度在各点上施测,此外,读数换算也比较简单。4)影响重力仪精度的因素及消除影响的措施 精度是指实测值逼近真实值的程度,它与测量次数有关,更与测量中不可避免的各种干扰因素造成的误差有关,影响重力仪观测精度的因素很多,如何采取相应
14、措施使这扰的影响减低到最低水平,是决定重力仪性能或质量懂得根本保证。鉴于这一问题涉及的面很广也很复杂,下面只能作写简要的介绍。温度影响温度变化会使重力仪各部件热胀冷缩,使各着力点间的相对位置发生变化;弹簧的弹力系数也是温度的函数,以石英弹簧为例,它的弹性温度系数约为120106,即温度变化1时,相当于重力(全值)变化了1200g.u.!因此,克服温度变化的影响是提高重力仪精度的重要保证,为此,已采用的措施有:研制与选用受温度变化影响小的材料作仪器的弹性元件;附加自动温度补偿装置;采用电热恒温(有的仪器加双层恒温),这样使仪器内部温度基本保持不变,此外在野外使用仪器时,应极力避免阳光直接照射的仪
15、器上,搬运中应设计通风性能好的专用外包装箱等。气压影响 主要是使空气密度改变而使平衡体所受的浮力改变,并在仪器内部可能形成微弱的气体流动冲击弹性系统。消除的办法有:将弹性系统置于高真空的封闭容器内;在与平衡体相反方向上(相对旋转轴而言)加一个等体积矩的气压补偿器;条件需要和许可时,应将仪器置入气压舱内检测受气压变化的影响,以便引入相应的气压校正。 电磁力影响 用石英材料制成的摆杆(平衡体),因质量很小无须夹固,当它在自由摆动时,会与容器中残存的空气分子相摩擦而产生静电,电荷的不断累积会使仪器读数发生变化。因此,这类仪器常在平衡体附近放一适量的放射性物质,使残存气体游离而导走电荷;对于用金属制成
16、的弹性元件来说,材料中含的铁磁性元素就会对地磁场变化产生响应而改变仪器读数,为此,要将整个弹性系统作消磁处理,外面再加上磁屏以屏蔽磁场;有条件时,应在人工磁场中进行实际测量,以了解受磁场方向、强度变化的影响,必要时引入相应的校正项;在野外工作中,利用指北针定向安放仪器,让摆杆方向总与地磁场垂直。 安置状态不一致的影响 由于在各测点上安放重力仪时不可能完全一致,因而摆杆与重力的交角就会不一致,从而使测量结果不仅包含有各测点间重力的变化量,还包含了摆杆与重力方向夹角不一致的影响,假设选定的零点位置与水平面夹角为a,则重力矩为Mg=m*g*l*cos,分别对g和微分后可得dg=-g*t*g*d=-g
17、*a*da。当安置时有a的偏差,则引起的误差应为 (2.1.9) 可见,这一误差既与a的大小有关。又与(a)有关,因此,重力仪的零点位置不能随便选取,应取水平位置(a=0)作零点位置;同时因g(a)2曲线是二次曲线,在a =0时取得极大值,因而对同样的a来说在极值处造成的误差远比在a为某一值时所带来的误差小,这即是说,当选取水平位置为零点位置时,因为安装条件不同带来的误差会最小。类似的分析也同样适合于旋转轴的水平与否,所以取平衡体的质心与水平转轴所构成的平面为水平时才是真正的水平零点位置,为达此目的,仪器的安置有供调平用的三个角螺旋和对应的两个水准气泡,与摆杆方向平行的称为纵水准仪,新出的仪器
18、还装有灵敏读更高的电子水泡或加一套自动调平系动。 零点漂移影响 重力仪中的弹性元件,在一个力(如重力)的长期作用下会产生弹性疲劳和蠕变等现象,使弹性元件随时间推移而产生极其微小的永久形变(如橡皮筋的老化),它严重地影响了重力仪的测量精度,带来了几乎无法克服的零点漂移,既仪器的零点位置在随时间变化,或且说,在同一点上排除了其它各种影响后,不同时刻的读数仍会不同,这种漂移量的大小和有无规律与材料的选择及工艺(如事前进行时效处理等)水平密切相关。一台好的重力仪应上零漂小而且尽困难与时间成线形关系,这是在恒温精度提高后的衡量仪器好坏的另一个重要指标,为消除这一影响,必须通过性能试验检查及零漂变化情况,
19、确定在重力基点控制下每一测段工作时间长短而专门引入零漂校正。震动的影响震动对观测精度的影响是众所周知的,例如仪器在运输中受突然性的碰撞,甚至取出与放回仪器时不小心碰撞了一下仪器桶边,常常会出现读数的突变(俗称突然变格);再则,仪器的零漂在动态时要比静态时大且无规律,且动态的零漂随运输方式不同也不尽相同,实践证明,飞机运输比汽车运输影响要小,在同样道路上不同型号的汽车其震动影响也不相同,特别在高精度的重力测量中,这已是一个非常关系测量误差大小的重要因素,多项测试表明,运输中减震方法可用泡沫海绵垫、软垫、弹簧悬挂装置、人工小心手提等,且以后两种方式造成的误差最小。2.2几种地面重力仪在弹簧类重力仪
20、中,按制作的材料不同可分为两大类,即石英弹簧重力仪与金属弹簧重力仪,都是依据重力矩与弹力矩平衡原理设计的,另一种是超导重力仪,由电磁力与重力平衡,精度很高,且几乎没有零源,但体积与数量均大,只适合于固定台站上供各种需研究重力随时间变化原因的科研用。2.2.1石英弹簧重力仪目前国内使用的有美国Texsas公司生产的渥尔登(Worlden)重力仪,它又分为四类,即主型(Master)、勘探型(Prppecter)、教学型(Education)和大地测量型(Geodestist);加拿大Scintrex公司制造的CG2型;另外就是国产的ZSM系列重力仪(90年代已停产),它们都属于旋转式重力仪,内部
21、结构大同小异,外型也都似一个较大的热水瓶,见图2.1-5,图2.1-10;1987年加拿大的Scintrex公司又推出线位移式的全自动重力仪CG3。其后又有CG3M型问世,可以说,CG3型重力仪是适应弹簧重力仪中的佼佼者,而CG3M型则因稳定性能好、精度高而与CG3型重力仪抗衡,下面我们将分别予以介绍。1 主要技术指标(表2.2-1) 表2.2-1 几种重力仪的主要技术指标仪器型号指标 WorldenCG2ZSMV主型探测型测量范围(g.u.)30000300005000050000精度(g.u.)0.10.10.3格值变化1/10001/10001/10001/1000恒温变化有无有重量(k
22、g)2.72.3562.仪器结构以ZSM型仪器为例(见图2.1-8至2.1-10),简介如下:(1) 弹性系统 位于仪器主体的底部,由重荷(铂环)1,石英摆杆2,水平扭丝3主弹簧4及温度补偿装置5、8、12、13,读数弹簧6,测程弹簧10等组成,除重荷及温度补偿丝为金属外,其他全为熔融石英制成,被一个石英矩形框架支撑,固定在密封容器的顶盖下。(2) 光学系统 它是一个放大倍数约200的长焦距显微镜,光源来自仪器面板上的聚光几种相对重力仪照片: 灯泡,由石英摆杆前的细丝指示7形成的亮线影像来指示平衡体的位置,当亮线在目镜中与刻度片中的零线重合时,表示平衡体回到了零点位置。(3)测读系统 它由读数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重力 原理 结构 解析 25
限制150内