《《数轴》例题讲解+基础、提高练习(共6页).doc》由会员分享,可在线阅读,更多相关《《数轴》例题讲解+基础、提高练习(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数轴例题讲解 为了学好有理数的概念,使思维适应数集的扩充,我们把现实生活中大量的有关模型,如直尺、杠杆、温度计、仪表上的刻度,所具有的本质属性抽象化,建立起数轴模型数轴的建立,赋予了抽象的代数概念以直观表象 数学一开始就是研究“数”和“形”的,从古希腊时期起,人们就已试图把它们统一起来 数与形有着密切的联系,我们常用代数的方法研究图形问题;另一方面,也利用图形来处理代数问题,这种数与形相互作用,是一种重要的数学思想数形结合思想 利用数形结合思想解题的关键是建立数与形之间的联系,现阶段,数轴是联系数与形的桥梁,主要体现在: 1运用数轴直观地表示有理数; 2运用数轴形象地
2、解释相反数; 3运用数轴准确地比较有理数的大小;4运用数轴恰当地解决与绝对值有关联的问题例题讲解【例1】(1)数轴上有、两点,如果点对应的数是,且、两点的距离为3,那么点对应的数是 (江苏省竞赛题)(2)在数轴上,点、分别表示和,则线段的中点所表示的数是 (江苏省竞赛题)(3)点A、B分别是数,在数轴上对应的点,使线段沿数轴向右移动到,且线段的中点对应的数是3,则点对应的数是_,点移动的距离是_ (“希望杯”邀请赛试题)思路点拨 (1)确定点的位置;(2)在数轴上选择两个特殊点,探索它们的中点所表示的数与所选两点所表示的数的联系;(3)在平移的过程中,线段的长度不变,即 【例2】 如图,在数轴
3、上有六个点,且,则与点所表示的数最接近的整数是_思路点拨 利用数轴提供的信息,求出的长度【例3】比较与的大小思路点拨 因为表示的数有任意性,直接比较常会发生遗漏的现象,若把各个范围在数轴上表示出来,借助数轴讨论它们的大小,则形象直观,解题的关键是由无意义得出,据此3个数把数轴分为6个部分【例4】阅读下面材料并回答问题 (1)阅读下面材料:点、在数轴上分别表示实数a、b,、两点之间的距离表示为当、两点中有一点在原点时,不妨设点 在原点,如图1,当、两点都不在原点时, 如图2,点、都在原点的右边;如图3,点、都在原点的左边,;如图4,点、在原点的两边,;综上,数轴上、两点之间的距离 (2)回答下列
4、问题: 数轴上表示2和5的两点之间的距离是 ,数轴上表示2和5的两点之间的距离是 ,数轴上表示1和3的两点之间的距离是 ; 数轴上表示和1的两点和之间的距离是 ,如果那么为_; 当代数式取最小值时,相应的的取值范围是 (南京市中考题)思路点拨 阅读理解从数轴上看,的意义 链接: 有效地从图形、图表获取信息是信息社会的基本要求 从数轴上获取有关信息是解有理数问题的常用技巧,主要包括: 数轴上诸点所表示的数的正负性; 数轴上的点到原点的距离 (1)字母表示数是代数的特点,但字母具有抽象性,所以在条件允许的范围内赋予字母以特殊值来计算、判断或探求解题思路,能化抽象为具体,这就是我们常说的“赋值法”,
5、但这种方法不能作为解题的规范过程(2)纯粹的代数方法比较抽象,如能借助图形(利用数形结合的思想方法),则可使许多抽象的概念和复杂的数量关系直观化、形象化,甚至简单化【例5】试求x-1十x2+x3+x1997的最小值 (天津市竞赛题)思路点拨 由于x的任意性、无限性,因此,通过逐个求出代数式的值解题明显困难,不妨从绝对值的几何意义,利用数轴入手,借助【例4】的结论解题【例6】 (1)工作流水线上顺次排列5个工作台、,一只工具箱应该放在何处,才能使工作台上操作机器的人取工具所走的路程最短? (2)如果工作台由5个改为6个,那么工具箱应如何放置能使6个操作机器的人取工具所走的路程之和最短? (3)当
6、流水线上有个工作台时,怎样放置工具箱最适宜?思路点拨 把流水线看作数轴,工作台、工具箱看作数轴上的点,这样,就找到了解决本例的模型数轴,将问题转化为【例4】的形式求解链接:设、是数轴上依次排列的点表示的有理数当为偶数时,若,则的值最小;当为奇数时,若,则的值最小基础训练一、基础夯实:1.在数轴上表示数a的点到原点的距离为,则a-3=_.2.a、b、c在数轴上的位置如图所示,则、中最大的是_. (第2题) (第3题) (第4题)3. (第12届“希望杯”邀请赛试题)有理数a、b、c在数轴上的位置如图所示,若m=a+b-b-1-a-c-1-c,则1000m=_. 4.如图,工作流程线上A、B、C、
7、D处各有1名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱的安放位置是_.5.有理数a、b、c在数轴上的位置如图,化简a+b-c-b的结果为( )A.a+c B.-a-2b+c C.a+2b-c D.-a-c (第5题) (第6题) (第8题)6. (第15届江苏省竞赛题)如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a,b,c,d,且d-2a=10,那么数轴的原点应是( ). A.A点 B.B点 C.C点 D.D点 7.x+1+x-1的最小值是( ). A.2 B.0 C.1 D.-18. (第1
8、8届江苏省竞赛题)数a、b、c、d所对应的点A、B、C、D在数轴上的位置如图所示,那么a+c与b+d的大小关系是( ). A.a+cb+d D.不确定的9. (北京市“迎春杯”竞赛题)已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为3,求所有满足条件的点B与原点O的距离的和. 10.已知两数a、b,如果a比b大,试判断a与b的大小.二、能力拓展11.有理数a、b满足a0,b0,a0,b0,则使x-a+x-b=a-b成立的x的取值范围是_. (武汉市选拔赛题)15.如图,A、B、C、D、E为数轴上的五个点,且AB=BC=CD=DE,则图中与P点表示的数比较接近的一个数是( ).
9、 A.-1 B.1 C.3 D.5 16.设y=x-1+x+1,则下面四个结论中正确的是( ). A.y没有最小值 B.只有一个x使y取最小值 C.有限个x(不止一个)使y取最小值; D.有无穷多个x使y取最小值17.不相等的有理数a、b、c在数轴上对应点分别为A、B、C,若a-b+b-c=a-c,那么点B( ). A.在A、C点右边; B.在A、C点左边; C.在A、C点之间; D.以上均有可能18.试求x-2+x-4+x-6+x-2000的最小值.19.电子跳蚤落在数轴上的某点K0,第一步从K0向左跳1个单位到K1,第二步由K1向右跳2个单位到K2,第三步由K2向左跳3个单位到K3,第四步
10、由K3向右跳4个单位到K4,按以上规律跳了100步时,电子跳蚤落在数轴上的点K100所表示的数恰是19.94,试求电子跳蚤的初始位置K0点所表示的数.三、综合创新20.如图,在数轴上(未标出原点及单位长度)点A为线段BC的中点,已知点A、B、C对应的三个数a、b、c之积是负数,这三个数之和与其中一数相等,设p为a、b、c三数中两数的比值,求p的最大值和最小值。21. (湖北省荆州市竞赛题)某城镇沿环形路上依次排列有五所小学:A1、A2、A3、A4、A5,它们顺次有电脑15台、7台、11台、3台、14台,为使各校的电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最少?
11、并求出电脑的最少总台数. 答案:1.0或-6 2. 3.-2000 4.放B、C(含B、C)之间任一处 5.A 6.B 7.A 8.A9.12 提示:点A表示的数为3或-3,满足条件的点B共有4个.10.当点B在原点的右边时,0bb;当点A在原点的左边时,ba0,则ab;当点A、B分别在原点的右、左两侧时,b0a,这时无法比较a与b的大小关系;当点A正好在原点位置时,ba;当点B正好在原点位置时,0=bb.11.b-aa-b. 12.4 13.2m 14.bxa 15.C 16.D 17.C18. 提示:当1000x1002时,原式有最小值,这个最小值为:(1002-2)+(1004-4)+(
12、2000-1000)=.19.-30.06 提示:设k0点表示的有理数为x,则k1、k2,k100点所表示的有理数分别为x-1,x-1+2,x-1+2-3,x-1+2-3+4-99+100,由题意得:x-1+2-3+4-99+100=19.94,解得x=-30.06.20.由图知abc0,知b0ac或bac0,将四个数,按由小到大的顺序排列是_ (江苏省首届数学文化节基础闯关题)3如图所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上的数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4
13、、所对应的点分别与圆周上1、2、0、1、所对应的点重合这样,正半轴上的整数就与圆周上的数字建立了一种对应关系(1)圆周上的数字与数轴上的数5对应,则=_;(2)数轴上的一个整数点刚刚绕过圆周圈后,并落在圆周上数字1所对应的位置,这个整数是_(用含的代数式表示) (江西省中考题)4在数轴上任取一条长度为的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A1998 B1999 C2000 D2001 (重庆市竞赛题)5在数轴上和有理数、对应的点的位置如图所示有下面四个结论:;其中,正确的结论有( )个A4 B3 C2 D1 (“希望杯”邀请赛试题)6在数轴上,若点N与点O距离是点N与30所对应点之间距离的4倍,则点N表示的数是_ (河南省竞赛题)7一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,表示第秒时机器人在数轴上的位置所对应的数,给出下列结论: ;其中,正确的结论的序号是( )A、 B、 C、 D、 (镇江市中考题)专心-专注-专业
限制150内