三角函数图像及其性质(共9页).doc
《三角函数图像及其性质(共9页).doc》由会员分享,可在线阅读,更多相关《三角函数图像及其性质(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上【本讲教育信息】一.教学内容:三角函数的图象与性质 二.教学目的:了解三角函数的周期性,知道三角函数yAsin(x),yAcos(x)的周期为。能画出ysin x,ycos x,ytan x的图象,并能根据图象理解正弦函数、余弦函数在0,2,正切函数在(,)上的性质(如单调性、最大值和最小值、图象与x轴的交点等)。了解三角函数 yAsin(x+)的实际意义及其参数A,对函数图象变化的影响;会画出yAsin(x+)的简图,能由正弦曲线 ysinx通过平移、伸缩变换得到yAsin(x+)的图象。会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模
2、型。 三.教学重点:三角函数的性质与运用教学难点:三角函数的性质与运用。 四.知识归纳1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是,的递增区间是,3.函数最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。4.由ysinx的图象变换出ysin(x)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不
3、是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将ysinx的图象向左(0)或向右(0平移个单位,再将图象上各点的横坐标变为原来的倍(0),便得ysin(x)的图象。途径二:先周期变换(伸缩变换)再平移变换。先将ysinx的图象上各点的横坐标变为原来的倍(0),再沿x轴向左(0)或向右(0平移个单位,便得ysin(x)的图象。5.由yAsin(x)的图象求其函数式:给出图象确定解析式y=Asin(x+)的题型,有时从寻找“五点”中的第一零点(,0)作为突破口,要从图象的升降情况找准第一个零点的位置.6.对称轴与对称中心:的对称轴为,对称中心为;的对称轴为,对称中心为;对于和来说,对
4、称中心与零点相联系,对称轴与最值点联系。7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;8.求三角函数周期的常用方法:经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。9.五点法作y=Asin(x+)的简图:五点取法是设x=x+,由x取0、2来求相应的x值及对应的y值,再描点作图。 【典型例题】例1.把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最小值是A. B. C. D.解:先写出向左平移4个单位后的解析式,再利用偶函数的性质求解.向左平移个单位
5、后的解析式为y=cos(x+),则cos(x+)=cos(x+),cosxcos(+)+sinxsin(+)=cosxcos(+)sinxsin(+).sinxsin(+)=0,xR.+=k.=k0.k.k=2.=.答案:B 例2.试述如何由y=sin(2x+)的图象得到y=sinx的图象.解:y=sin(2x+)另法答案:(1)先将y=sin(2x+)的图象向右平移个单位,得y=sin2x的图象;(2)再将y=sin2x上各点的横坐标扩大为原来的2倍(纵坐标不变),得y=sinx的图象;(3)再将y=sinx图象上各点的纵坐标扩大为原来的3倍(横坐标不变),即可得到y=sinx的图象. 例3
6、.求函数y=sin4x+2sinxcosxcos4x的最小正周期和最小值;并写出该函数在0,上的单调递增区间.解:y=sin4x+2sinxcosxcos4x=(sin2x+cos2x)(sin2xcos2x)+sin2x=sin2xcos2x=2sin(2x).故该函数的最小正周期是;最小值是2;单调递增区间是0,.点评:把三角函数式化简为y=Asin(x+)+k(0)是解决周期、最值、单调区间问题的常用方法. 例4.已知电流I与时间t的关系式为。(1)下图是(0,)在一个周期内的图象,根据图中数据求的解析式;(2)如果t在任意一段秒的时间内,电流都能取得最大值和最小值,那么的最小正整数值是
7、多少?解:本小题主要考查三角函数的图象与性质等基础知识,考查运算能力和逻辑推理能力(1)由图可知 A300设t1,t2,则周期T2(t2t1)2()150 又当t时,I0,即sin(150)0,而, 故所求的解析式为 (2)依题意,周期T,即,(0) 300942,又N*,故最小正整数943 点评:本题解答的开窍点是将图形语言转化为符号语言。其中,读图、识图、用图是形数结合的有效途径。 例5.(1)y=cosx+cos(x+)的最大值是_;(2)y=2sin(3x)的图象的两条相邻对称轴之间的距离是_.解:(1)y=cosx+cosxsinx=cosxsinx=(cosxsinx)=sin(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 图像 及其 性质
限制150内