导数习题+答案(共10页).doc
《导数习题+答案(共10页).doc》由会员分享,可在线阅读,更多相关《导数习题+答案(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一解答题(共9小题)1已知a0,函数f(x)=lnxax2,x0()求f(x)的单调区间;()若存在均属于区间1,3的,且1,使f()=f(),证明2已知函数f(x)=xlnx2x+a,其中aR(1)求f(x)的单调区间;(2)若方程f(x)=0没有实根,求a的取值范围;(3)证明:ln1+2ln2+3ln3+nlnn(n1)2,其中n23已知函数f(x)=axlnx(a0)()求函数f(x)的单调区间和最值;()若m0,n0,a0,证明:f(m)+f(n)+a(m+n)ln2f(m+n)4已知函数f(x)=2exx(1)求f(x)在区间1,m(m1)上的最小值;(2
2、)求证:对时,恒有5设a为实数,函数f(x)=ex2x+2a,xR(1)求f(x)的单调区间及极值;(2)求证:当aln21且x0时,exx22ax+16已知函数f(x)=ln(x+2)a(x+1)(a0)(1)求函数f(x)的单调区间;(2)若x2,证明:1ln(x+2)x+17已知函数f(x)=ln(x+1)x()求函数f(x)的单调递减区间;()若x1,证明:8已知函数(1)当a=1时,利用函数单调性的定义证明函数f(x)在(0,1内是单调减函数;(2)当x(0,+)时f(x)1恒成立,求实数a的取值范围9已知函数f(x)=(1)当a0,x1,+)时,判断并证明函数f(x)的单调性(2)
3、若对于任意x1,+),不等式f(x)0恒成立,求实数a的取值范围参考答案与试题解析一解答题(共9小题)1已知a0,函数f(x)=lnxax2,x0()求f(x)的单调区间;()若存在均属于区间1,3的,且1,使f()=f(),证明考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性。专题:综合题。分析:(I)由,令f(x)=0,解得x=,列表讨论能求出f(x)的单调递增区间和单调递减区间(II)由f()=f()及(I)的结论知,从而f(x)在,上的最小值为f(a)由1,1,3,知123由此能够证明解答:(I)解:,令f(x)=0,解得x=,当x变化时,f(x),f(x)的变化情况如下表
4、:xf(x)+0f(x)极大值所以,f(x)的单调递增区间是的单调递减区间是(II)证明:由f()=f()及(I)的结论知,从而f(x)在,上的最小值为f(a)又由1,1,3,知123故,即,从而点评:本题考查函数单调区间的求法和利用导数求闭区间上函数最值的应用,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识2已知函数f(x)=xlnx2x+a,其中aR(1)求f(x)的单调区间;(2)若方程f(x)=0没有实根,求a的取值范围;(3)证明:ln1+2ln2+3ln3+nlnn(n1)2,其中n2考点:不等式的综合;利用导数研究函数的单调性;
5、数学归纳法。专题:证明题;综合题;转化思想。分析:(1)利用导数求出函数的极值,然后求f(x)的单调区间;(2)若方程f(x)=0没有实根,由(1)可得f(x)在x=e处取得极小值,且f(x)=0没有实根,即可求a的取值范围;(3)方法一:利用x0,xlnx2x3恒成立,即可证明ln1+2ln2+3ln3+nlnn(n1)2方法二:利用数学归纳法验证n=2成立,然后通过假设,证明n=k+1不等式也成立即可解答:解:(1)由题意可知:f(x)=lnx1,令f(x)=0,得x=e,(1分)则当x(0,e)时,f(x)0,f(x)单调递减;(2分)当x(e,+)时,f(x)0,f(x)单调递增(4分
6、)(2)由(1)可得f(x)在x=e处取得极小值,且f(x)=0没有实根,(6分)则minf(x)=f(e)0,即ae0,解得:ae(8分)(3)方法1:由(2)得,令a=3e,f(x)=xlnx2x+30成立,则x0,xlnx2x3恒成立(10分)故ln1+2ln2+3ln3+nlnn=2ln2+3ln3+nlnn(223)+(233)+(243)+(2n3)=(n1)2,即得证(14分)方法2:数学归纳法(1)当n=2(2)时,ln1+2ln212(3)成立;(4)当n=k(5)时,ln1+2ln2+3ln3+klnk(k1)2(6)成立,当n=k+1时,ln1+2ln2+3ln3+kln
7、k+(k+1)ln(k+1)(k1)2+(k+1)ln(k+1)同理令a=3e,xlnx2x3,即(k+1)ln(k+1)2(k+1)3,(10分)则(k1)2+(k+1)ln(k+1)(k1)2+2(k+1)3=k2,(12分)故ln1+2ln2+3ln3+klnk+(k+1)ln(k+1)k2,即ln1+2ln2+3ln3+klnk(k1)2对n=k+1也成立,综合(1)(2)得:n2,ln1+2ln2+3ln3+nlnn(n1)2恒成立(14分)点评:本题是中档题,考查函数的导数的应用,不等式的综合应用,数学归纳法的应用,考查计算能力,转化思想的应用3已知函数f(x)=axlnx(a0)
8、()求函数f(x)的单调区间和最值;()若m0,n0,a0,证明:f(m)+f(n)+a(m+n)ln2f(m+n)考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值;不等式的证明。专题:综合题。分析:(1)求出f(x),然后让其大于0得到递增区间,小于0得到递减区间,根据函数的增减性得到函数的极值即可;(2)要证明此结论成立,只需证f(m)+f(n)+a(m+n)ln2f(m+n)0,设把不等式左边化简得到anklnk+(k+1)ln,设g(k)=klnk+(k+1)ln,得到其导函数大于0,g(k)g(1)=0,又a0,n0,左边右边0,得证解答:解:()f(x)=alnx+a(
9、x0),令f(x)0,当a0时,即lnx1=lne1同理,令f(x)0可得f(x)单调递增区间为,单调递减区间为由此可知无最大值当a0时,令f(x)0即lnx1=lne1同理,令f(x)0可得f(x)单调递增区间为,单调递减区间为由此可知此时无最小值()证:不妨设mn0,则m=kn(k1)左边右边=amlnm+nlnn+(m+n)ln2(m+n)ln(m+n)=令,则=g(k)g(1)=0,又a0,n0,左边右边0,得证点评:考查学生利用导数研究函数单调性的能力,利用导数求比区间上函数最值的能力,掌握证明不等式方法的能力4已知函数f(x)=2exx(1)求f(x)在区间1,m(m1)上的最小值
10、;(2)求证:对时,恒有考点:利用导数求闭区间上函数的最值;导数在最大值、最小值问题中的应用。专题:计算题;证明题。分析:(1)求出f(x)的导函数,令导函数为0求出根,通过讨论根与定义域的关系,判断出函数的单调性,求出函数的最小值(2)将不等式变形,构造新函数g(x),求出g(x)的导函数,通过判断导函数的符号判断出其单调性,进一步求出其最小值,得证解答:解(1)当f(x)=2ex1=0,解得当时,f(x)0,f(x)在1,m上单调减,则f(x)的最小值为f(m)=2emm当时,上递减,上递增,则f(x)的最小值为(2)g(x)=2exx1ln2=f(x)1ln2由(1)知当时,f(x)的最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 习题 答案 10
限制150内