分式运算的常用技巧与方法解读(共10页).doc
《分式运算的常用技巧与方法解读(共10页).doc》由会员分享,可在线阅读,更多相关《分式运算的常用技巧与方法解读(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上分式运算中的常用技巧与方法教学目标:掌握分式运算中的常用技巧与方法,会灵活运用这些方法准确解答较复杂的分式计算题。教学重难点:会灵活运用所学的技巧与方法准确计算。教学过程:一 复习1.分式的加减乘除及乘方的运算法则2.分式混合运算的顺序二 分式运算的常用技巧与方法举例1. 整体通分法例1化简:-a-1分析 将后两项看作一个整体,则可以整体通分,简捷求解。解:-a-1=-(a+1= -=练习:计算2. 逐项通分法例2计算-分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法解:-=-=-=-=-=0练习:计算3.先约分,后通分例3计算:+分析:分子、分母先分解因式
2、,约分后再通分求值计算解:+=+=+=2练习:计算:4. 裂项相消法例4 计算分析 我们看到题目中每一个分式的分母是两个因数之积,而分子又是一个定值时,可将每一个分式先拆成两项之差,前后相约后再通分.解:原式=练习:计算:.5. 整体代入法例5已知+=5求的值解法1:+=5xy0,.所以=解法2:由+=5得,=5, x+y=5xy=练习:若=5,求的值6.运用公式变形法例6已知a2-5a+1=0,计算a4+解:由已知条件可得a0,a+=5a4+=(a2+2-2=(a+2-22-2=(52-22-2=527练习:(1)已知x2+3x+1=0,求x2+的值7. 设辅助参数法例7已知= = ,计算:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式 运算 常用 技巧 方法 解读 10
限制150内