递归算法与递归程序(一二)(共13页).doc
《递归算法与递归程序(一二)(共13页).doc》由会员分享,可在线阅读,更多相关《递归算法与递归程序(一二)(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上4.5 递归算法与递归程序(一、二)教者:吴艳超 时间:一、课程内容标准:递归算法与问题解决:1、了解使用递归法设计算法的基本过程2、能够根据具体问题的要求,使用递归设计算法、编写递归函数、编写程序、求解问题例1 写出两个正整数乘积mn的递归函数。例2 汉诺塔问题:传说在古代印度的贝拿勒斯圣庙里,安放一块黄铜板,板上插了三根宝石柱,在其中一根宝石柱,自上而下按由小到大的顺序串有64个金盘。这就是汉诺塔游戏。要求将左边柱子上的64个金盘按照下面的规则移到右边的柱子上。规则:(1)一次只能移动一个盘子(2)盘子只能在三个柱子上存放。(3)任何时候大盘不能放在小盘上面。二、
2、教学目标1、知识与技能(1)认识递归现象。(2)使用递归算法解决问题往往能使算法的描述乘法而易于表达(3)理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行2、方法与过程:本节以斐波那契的兔子问题引入,通过发现先后三个月兔子数量的变化规律入手,导出了F(N)=F(N-1)+F(N+2)(N3)递推式。马上介绍斐波那契问题的非递归解决方法,如果加以恰当引导,把两个解法对比,会出现效率高的需要较多的经验和技艺才能写出程序,而程序相对容易写出的是在运行时,但效率却不够高。(在调试程序4-16时可逐步加大月数N,会发出N=40时,明显感觉等待的时间较长,而当N=
3、200时,等待的时间会遥遥无期。)汉诺塔问题是一个经典问题,它著名在使用了递归解法来解决问题。理解这个递归解法是重点,也是难点。3、情感态度和价值观结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出提升学生在各个领域的计算机应用水平,提高学生交流和讨论,自己总结获得新的知识能力,培养学生正确寻找解决问题的方法和正确的学习方法。三、重点难点1、教学重点(1)了解递归现象和递归算法的特点。(2)能够根据问题设计出恰当的递归程序。2、教学难点(1)递归过程思路的建立。(2)判断问题是否适于递归解法。(3)正确写出递归程序。四、教学环境1、教材处理教材选自广东省普通高中信息技术选修
4、一:算法与程序设计第四章第五节,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2)和练习(3),这两道题目的形式相差很远,但方法和答案却都是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。教学方法采用讲解、探究、任务驱动和学生自主学习相结合2、预备知识学生已掌握了
5、用计算机解决问题的过程,掌握了程序设计基础,掌握了解析法、穷举法、查找法、排序法设计程序的技巧。3、硬件要求建议本节课在多媒体电脑教室中完成,最好有广播教学系统或投影仪,为拓展学习,学生机应允许上互联网。五、教学过程导入:大家玩 图4-5(1)汉诺塔游戏的部分界面这个游戏盘子在A、B、C三根柱子上不停运动,有没有规律,和你在照过镜子时遇到的情况相同吗?当你往镜子前面一站,镜子里面就有一个你的像。但你试过两面镜子一起照吗?如果甲、乙两面镜子相互面对面放着,你往中间一站,嘿,两面镜子里都有你的千百个“化身”!为什么会有这么奇妙的现象呢?原来,甲镜子里有乙镜子的像,乙镜子里也有甲镜子的像,而且这样反
6、反复复,就会产生一连串的“像中像”。这是一种递归现象。由同学们总结出递归算法的概念递归算法:是一种直接或者间接地调用自身的算法。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。问题4-16:著名的意大利数学家斐波那契(Fibonacci)在他的著作算盘书中提出了一个“兔子问题”:假定小兔子一个月就可以长成大兔子,而大兔子每个月都会生出一对小兔子。如果年初养了一对小兔子,问到年底时将有多少对兔子? (当然得假设兔子没有死亡而且严格按照上述规律长大与繁殖)我们不难用以前学过的知识设计出如下算法: 输入计算兔子的月份数:n If n 3 Then c =
7、 1 Else a = 1: b = 1 i = 3 c = a + b:a = b:b = c i=i+1,如果in则返回 结束参考程序如下:Private Sub Command1_Click() n = Val(Text1.Text) If n =3 )F ( 1 ) = F ( 2 ) = 1这是因为每月的大兔子数目一定等于上月的兔子总数,而每个月的小兔子数目一定等于上月的大兔子数目(即前一个月的兔子的数目)。由上述的递推式我们可以设计出递归程序。递归程序的特点是独立写出一个函数(或子过程),而这个函数只对极简单的几种情况直接给出解答,而在其余情况下通过反复的调用自身而把问题归结到最简
8、单的情况而得到解答。空中加油站:自定义函数的定义格式:Function procedurename(arguments) As typeStatementsEnd Function其中的procedurename是函数名,arguments是函数中的参数表,type是函数返回值的数据类型,表示可有可无的部分,statements是过程中的代码调用函数的格式:procedurename(arguments)(3)编写程序。窗体中开设一个文本框Textl用于填人月数N,设置命令框Commandl,点击它即执行程序求出第N月的兔子数。然后用文本框Text2输出答案。根据递推式可以写出递归程序如下:
9、Function Fib(ByVal N As Integer) As Long If N 3 Then Fib = 1 Else Fib = Fib(N - 1) + Fib(N - 2)End FunctionPrivate Sub Command1_Click() N = Val(Text1.Text) Text2.Text = 第 & N & 月的兔子数目是: & Fib(N)End Sub (4)调试程序因为这个算法的效率不高,建议在调试程序时月份数不要大于40。图4-5(4)斐波那契兔子程序运行结果图 (5)检测结果挑战自我:(以下部分由学生自己完成)(1)利用递归方法编写一求N的
10、阶乘。分析:根据N!=N*(N-1)*(N-2)*(N-3)*3*2*1可以推出下列式子:F = n * F(n - 1)这是一个典型的递归算法,参考程序如下:Function F(ByVal n As Integer) As Long If n = 1 Then F = 1 Else F = n * F(n - 1)End FunctionPrivate Sub Form_Click() Dim n As Integer n = Val(InputBox(请输入正整数N:, 求N的阶乘) Print 输入的正整数是; n; Print ,阶乘是; F(n)End Sub图4-5(5)求阶乘程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 递归 算法 程序 一二 13
限制150内