全国初中数学竞赛试题及答案(共15页).doc
《全国初中数学竞赛试题及答案(共15页).doc》由会员分享,可在线阅读,更多相关《全国初中数学竞赛试题及答案(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲)如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为( ) (A) (B) (C) (D)a1(乙)如果,那么的值为( )(A) (B) (C)2 (D)2(甲)如果正比例函数y = ax(a 0)与反比例函数y =(b 0 )的图象有两个交点,其中一个交点的坐标为(3,2),那么另一个交点的坐标为( )(A)(2,3) (B)(3,2) (C)(2,3) (D)(3,2)2(乙) 在平面直角坐标系中,满足不等式x2y22x2y的整数点坐标(x,y)的
2、个数为( ) (A)10 (B)9 (C)7 (D)53(甲)如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是( ) (A)1 (B) (C) (D)3(乙)如图,四边形ABCD中,AC,BD是对角线,ABC是等边三角形,AD = 3,BD = 5,则CD的长为( )(A) (B)4 (C) (D)4.54(甲)小倩和小玲每人都有若干面值为整数元的人民币小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是( )(A)1 (B)2 (C)3 (D)44(乙)如果关于x的方程 是正整数)的
3、正根小于3, 那么这样的方程的个数是( )(A) 5 (B) 6 (C) 7 (D) 85(甲)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是( )(A) (B) (C) (D)5(乙)黑板上写有共100个数字每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是( )(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题6分,共30分)6(甲)按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果
4、是否487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是 .6(乙).如果a,b,c是正数,且满足,那么的值为 7(甲)如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则DMN的面积是 .7(乙).如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若,则线段CE、BD的长度差是 。8(甲). 如果关于x的方程x2+kx+k23k+= 0的两个实数根分别为,那么 的值为 8(乙)设为整数,且1n2012. 若能被5整除,则所有的个数为 .9(甲). 2位八年级同学和m位九年级同学一起参
5、加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m的值为 .9(乙)如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数若和均为三角形数,且abc,则的取值范围是 .10(甲)如图,四边形ABCD内接于O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BFEC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为 .10(乙)已知是偶数,且1100若有唯一的正整数对使得成立,则这样的的个数为 三、解答题(共4
6、题,每题15分,共60分)11(甲)已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于求的取值范围11(乙). 如图所示,在直角坐标系xOy中,点A在y轴负半轴上,点B、C分别在x轴正、负半轴上,。点D在线段AB上,连结CD交y轴于点E,且。试求图像经过B、C、E三点的二次函数的解析式。12(甲). 如图,O的直径为,过点,且与O内切于点为O上的点,与交于点,且点在上,且,BE的延长线与交于点,求证:BOC12(乙)如图,O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是ABD的内心. 求证:(1)OI是IBD的外接圆的切线;(2)AB+AD = 2BD.13(甲).
7、 已知整数a,b满足:ab是素数,且ab是完全平方数. 当2012时,求a的最小值.13(乙)给定一个正整数,凸边形中最多有多少个内角等于?并说明理由14(甲). 求所有正整数n,使得存在正整数,满足,且.14(乙)将,(n2)任意分成两组,如果总可以在其中一组中找到数 (可以相同),使得,求的最小值参考解答 一、选择题1(甲) .C解:由实数a,b,c在数轴上的位置可知,且,所以 1(乙)B解:2(甲)D解:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙)B解:由题设x2y22x2y, 得02.因为均为整数,所以有 解得 以上共
8、计9对.3(甲)D 解:由题设知,所以这四个数据的平均数为,中位数为 ,于是 .3(乙)B解:如图,以CD为边作等边CDE,连接AE. 由于AC = BC,CD = CE,BCD=BCA+ACD=DCE+ACD =ACE,所以BCDACE, BD = AE.又因为,所以.在Rt中,于是DE=,所以CD = DE = 4. 4(甲)D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得 (2y7)n = y+4, 2n =.因为为正整数,所以2y7的值分别为1,3,5,15,所以y的值只能为4,5,6,11从而n的值分别为8,3,2,1;x的值分别为14,7,6,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 初中 数学 竞赛 试题 答案 15
限制150内