高考数学-圆锥曲线-双曲线题型总结(共7页).doc
《高考数学-圆锥曲线-双曲线题型总结(共7页).doc》由会员分享,可在线阅读,更多相关《高考数学-圆锥曲线-双曲线题型总结(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二、双曲线1、(21)(本小题满分14分)08天津已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.()求双曲线C的方程;()若以为斜率的直线与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.(21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力满分14分()解:设双曲线的方程为()由题设得,解得,所以双曲线方程为()解:设直线的方程为()点,的坐标满足方程组将式代入式,得,整理得此方程有两个一等实根,
2、于是,且整理得由根与系数的关系可知线段的中点坐标满足,从而线段的垂直平分线方程为此直线与轴,轴的交点坐标分别为,由题设可得整理得,将上式代入式得,整理得,解得或所以的取值范围是2、(2008上海理18)已知双曲线,为上的任意点。(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;(2)设点的坐标为,求的最小值;解;(1)设是双曲线上任意一点,该双曲的两条渐近线方程分别是和. 点到两条渐近线的距离分别是和, 它们的乘积是.点到双曲线的两条渐线的距离的乘积是一常数. (2)设的坐标为,则 , 当时,的最小值为,即的最小值为. 3、(2007湖南理20)已知双曲线的左、右焦点分别为,过点的动直
3、线与双曲线相交于两点.(I)若动点满足(其中为坐标原点),求点的轨迹方程;(II)在轴上是否存在定点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.解:由条件知,设,.解法一:(I)设,则则,由得即于是的中点坐标为.当不与轴垂直时,即.又因为两点在双曲线上,所以,两式相减得,即.将代入上式,化简得.当与轴垂直时,求得,也满足上述方程.所以点的轨迹方程是.(II)假设在轴上存在定点,使为常数.当不与轴垂直时,设直线的方程是.代入有.则是上述方程的两个实根,所以,于是.因为是与无关的常数,所以,即,此时=.当与轴垂直时,点的坐标可分别设为,此时.故在轴上存在定点,使为常数.解法二:(I)同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 圆锥曲线 双曲线 题型 总结
限制150内