数列求和方法及巩固(共7页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数列求和方法及巩固(共7页).doc》由会员分享,可在线阅读,更多相关《数列求和方法及巩固(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数列求和的方法1、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求.等差数列求和公式:等比数列求和公式:常见的数列的前n项和:, 1+3+5+(2n-1)=,等.2、倒序相加法:类似于等差数列的前n项和的公式的推导方法。如果一个数列,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法.例1、 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明
2、的结论可知,两式相加得: 所以.小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.针对训练3、求值:3、错位相减法:类似于等比数列的前n项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差比”数列,则采用错位相减法.若,其中是等差数列,是公比为等比数列,令 则 两式相减并整理即得例2、(2008年全国第19题第(2)小题,满分6分)已知 ,求数列an的前n项和Sn.解: 得小结:错位相减法的求解步骤:在等式两边同时乘以等比数列的公比;将两个等式相减;利用等比数列的前n项和的公式求和.针对训练4、求和:4、裂项相消法:把数列的通项
3、拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等。用裂项相消法求和,需要掌握一些常见的裂项方法:(1),特别地当时,(2),特别地当时例3、数列的通项公式为,求它的前n项和解: = 小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同.针对训练5、求数列的前n项和.5、分组求和法:有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆
4、开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可.例4、求和:解:小结:这是求和的常用方法,按照一定规律将数列分成等差(比)数列或常见的数列,使问题得到顺利求解.针对训练6、求和:基本练习1.等比数列的前项和S2,则_.2.设,则_.3. .4. =_5. 数列的通项公式 ,前n项和 6 的前n项和为_提高练习1数列an满足:a11,且对任意的m,nN*都有:amnamanmn,则 ( )ABCD2数列an、bn都是公差为1的等差数列,若其首项满足a1b15,a1b1,且a1,b1N*,则数列前10项的和等于 ( )A100B85C70D553设m=12+23+34+(n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 求和 方法 巩固
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内