平面向量的坐标运算说课稿(共5页).doc
《平面向量的坐标运算说课稿(共5页).doc》由会员分享,可在线阅读,更多相关《平面向量的坐标运算说课稿(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上平 面 向 量 的 坐 标 运 算 一、【教材的地位和作用】本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。二、【学习目标】根据教学大纲的要求以及学生的实际知识水平,通过课堂教学,以期达到以下四个方面的目的:
2、1.知识方面:理解平面向量的坐标表示的意义,能熟练地运用坐标形式进行运算。2.能力方面:数形结合的思想和转化的思想。3.过程与方法:通过平面向量坐标表示和坐标运算法则的推导培养学生演绎、归纳、猜想的能力;通过对坐标平面内点和向量的类比,培养学生类比推理的能力;借助数学图形解决问题,提高学生用数形结合的思想方法解决问题的能力。4.情感态度与价值观:设置问题情境让学生认识到课堂知识与实际生活的联系,感受数学来源于生活并服务于生活,体会客观世界中事物与事物之间普遍联系的辩证唯物主义观点。三、【教学重点和难点】理解平面向量坐标化的意义是教学的难点;平面向量的坐标运算则是重点。我主要是采用启发引导式,并
3、辅助适量的题组练习来帮助学生突破难点,强化重点。四、【教法和学法】针对本节课的教学目标和学生的实际情况,在教学中采用“引导发现,合作探究”的教学方法。教学主要从以下几个方面准备:(1)提供新知识产生的铺垫知识;(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构;(3)创设新知识思维发展的前景;(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习。整个过程学生始终处于交互式的学习环境中,让学生用自己的活动对已有的数学知识建构起自己的理解;让学生有了亲身参与的可能并且这种主动参与就为学生的主动性、积极性的发挥创造了很好的条件,真正实现了“学生是学习的主体”这一理念。 五、【学
4、习过程】1.提供新知识产生的理论基础课堂教学论认为:要使教学过程最优化,首先要把已学的材料与学生已有的信息联系起来,使学生在学习新的材料时有适当的知识冗余。在本节之前,学生接触到的是向量的几何表示;向量共线的充要条件和平面向量的基本定理为引入向量的坐标运算奠定了理论基础。尤其是平面向量的基本定理,在新授课之前,我以为应再次跟学生进行强调,揭示其本质:即平面内的任一向量都可以表示为不共线的向量的线形组合。对于基底的理解,指出“基底不唯一,关键是不共线”。这样就使得新课的导入显得自然而不突兀,学生也很容易联想到基底选择的特殊性,从而引出坐标表示。2.新课引入哲学家卡尔.波普尔曾指出“科学与知识的增
5、长永远始于问题,终于问题愈来愈深化的问题,愈来愈能启发新问题的问题”,这对数学亦不例外。因此,在新课的引入中首先提出问题“在直角坐标系内,平面内的每一个点都可以用一对实数(即它的坐标)来表示。同样,在平面直角坐标系内,每一个平面向量是否也可以用一对实数来表示?”,问题的给出旨在启发学生的思维。而学生思维是否到位,是否可以达到自己建构新知识的目的,取决于老师的引导是否得当。 3.创建新知识以学生为主体绝不意味着老师可以袖手旁观,在创设问题情景后学生已进入激活状态,即想说但又不知道怎么说的状态,这时需老师适当加以点拨。指出:选择在平面直角坐标系内与坐标轴的正方向相同的两个单位向量、作为基底,任做一
6、个向量。由平面向量基本定理知,有并且只有一对实数x , y ,使我们把 ( x , y ) 叫做向量的(直角)坐标,记作 其中x叫做在 x 轴上的坐标,也叫做的第一分量;y叫做在y轴上的坐标,也叫做第二分量。指导学生回答, 以及的坐标。至此,完成向量的坐标表示的新知识的建构过程。整个过程决非把老师的认识强加给学生,而是把学生放在认知的主体地位,学生通过观察幻灯片的演示和老师的提示,思维得到了发展,观察、归纳能力得到了提高,对新授知识的理解更加清晰和深刻。4.突破难点、突出重点本节的学习中最难理解的就是向量与实数对之间的一一对应关系。为了突破该难点,我认为可以如此操作。通过动画设计,并结合向量相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 坐标 运算 说课稿
限制150内