植物生理学第七版潘瑞炽编课后习题答案(共10页).doc
《植物生理学第七版潘瑞炽编课后习题答案(共10页).doc》由会员分享,可在线阅读,更多相关《植物生理学第七版潘瑞炽编课后习题答案(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章 植物的水分生理l 水势:水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。l 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。l 根压:由于水势梯度引起水分进入中柱后产生的压力。l 蒸腾作用:指水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。l 内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。l 水分临界期:植物对水分不足特别敏感的时期。3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的?答:通过膜脂双分子层的间隙进入细胞。膜上的水孔蛋白形成水通道,造成植物
2、细胞的水分集流。植物的水孔蛋白有三种类型:质膜上的质膜内在蛋白、液泡膜上的液泡膜内在蛋白和根瘤共生膜上的内在蛋白,其中液泡膜的水孔蛋白在植物体中分布最丰富、水分透过性最大。5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?答:保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大40100%。保卫细胞细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。 保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于是吸水膨胀,气孔张开;在黑暗条件下,
3、进行呼吸作用,消耗有机物,升高了渗透势,于是失水,气孔关闭。6.气孔的张开与保卫细胞的什么结构有关?答:细胞壁具有伸缩性,细胞的体积能可逆性地增大40100%。细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。第二章 植物的矿质营养l 矿质营养:植物对矿物质的吸收、转运和同化。l 大量元素:植物需要量较大的元素。l 选择透性:细胞膜质对不同物质的透性不同。l 被动运输:转运过程顺电化学梯度进行,不需要代谢供给能量。l 主动运输:转运过程逆电化学梯度进行,需要
4、代谢供给能量。l 生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。l 诱导酶:是指植物本来不含某种酶,但在特定外来物质的诱导下生成的酶。l 生物膜:细胞的外周膜和内膜系统。1.植物进行正常生命活动需要哪些矿质元素?如何用实验方法证明植物生长需这些元素答:分为大量元素和微量元素两种:大量元素:C H O N P S K Ca Mg Si ,微量元素:Fe Mn Zn Cu Na Mo P Cl Ni ,实验的方法:使用溶液培养法或砂基培养法证明:通过加入部分营养元素的溶液,观察植物是否能够正常的生长。如果能正常生长,则证明缺少的元素不是植物生长必须的元素;如果不能正常生长,则证明
5、缺少的元素是植物生长所必须的元素。2.在植物生长过程中,如何鉴别发生缺氮、磷、钾现象;若发生,可采用哪些补救措施?缺氮:植物矮小,叶小色淡或发红,分枝少,花少,子实不饱满,产量低。补救措施:施加氮肥。 缺磷:生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,开花期和成熟期都延迟,产量降低,抗性减弱。补救措施:施加磷肥。 缺钾:植株茎秆柔弱易倒伏,抗旱性和抗寒性均差,叶色变黄,逐渐坏死,缺绿开始在老叶。补救措施:施加钾肥。4.植物细胞通过哪些方式来吸收溶质以满足正常生命活动的需要?(一) 扩散:1.简单扩散:溶质从高浓度的区域跨膜移向浓度较低的邻近区域的物理过程。2.易化扩散:又称协助扩散,指
6、膜转运蛋白易让溶质顺浓度梯度或电化学梯度跨膜转运,不需要细胞提供能量。(二) 离子通道:细胞膜中,由通道蛋白构成的孔道,控制离子通过细胞膜。(三) 载体:跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构。1.单向运输载体:(uniport carrier)能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。2.同向运输器:(symporter)指运输器与质膜外的H结合的同时,又与另一分子或离子结合,同一方向运输。3.反向运输器:(antiporter)指运输器与质膜外侧的H结合的同时,又与质膜内侧的分子或离子结合,两者朝相反的方向运输。(四) 离子泵:膜内在蛋白,是质膜上的ATP酶,通过活化
7、ATP释放能量推动离子逆化学势梯度进行跨膜转运。(五) 胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。5.简述植物体内铵同化的途径。答:谷氨酰胺合成酶途径。即铵与谷氨酸及ATP结合,形成谷氨酰胺。谷氨酸合酶途径。谷氨酰胺与-酮戊二酸及NADH(或还原型Fd)结合,形成2分子谷氨酸。谷氨酸脱氢酶途径。铵与-酮戊二酸及NAD(P)H结合,形成谷氨酸。氨基交换作用途径。谷氨酸与草酰乙酸结合,在ASP-AT作用下,形成天冬氨酸和-酮戊二酸。谷氨酰胺与天冬氨酸及ATP结合,在AS作用下形成天冬酰胺和谷氨酸。11.植物对水分和矿质元素的吸收有什么关系?是否完全一致?答:关系:矿质元素可以溶解
8、在溶液中,通过溶液的流动来吸收。两者的吸收不完全一致相同点:两者都可以通过质外体途径和共质体途径进入根部。 温度和通气状况都会影响两者的吸收。不同点:矿质元素除了根部吸收后,还可以通过叶片吸收和离子交换的方式吸收矿物质。 水分还可以通过跨膜途径在根部被吸收。12.细胞吸收水分和吸收矿质元素有什么关系?有什么异同?答:关系:水分在通过集流作用吸收时,会同时运输少量的离子和小溶质调节渗透势。相同点:都可以通过扩散的方式来吸收。都可以经过通道来吸收。不同点:水分可以通过集流的方式来吸收。水分经过的是水通道,矿质元素经过的是离子通道。矿质元素还可以通过载体、离子泵和胞饮的形式来运输。15.引起嫩叶发黄
9、和老叶发黄的分别是什么元素?请列表说明。答:引起嫩叶发黄的:S Fe,两者都不能从老叶移动到嫩叶。引起老叶发黄的:K N Mg Mo,以上元素都可以从老叶移动到嫩叶。Mn既可以引起嫩叶发黄,也可以引起老叶发黄,依植物的种类和生长速率而定。9,根部细胞吸收矿质元素的途径和动力、 答;通过共质体和质外体运输,韧皮部是运输养料矿质元素的。通过蒸腾作用产生蒸腾拉力促使他们运输的。第三章 植物的光和作用ll 吸收光谱:经过叶绿素吸收后,在光谱上出现黑线或暗带。l 碳反应:在暗处或光处都能进行的,由若干酶所催化的化学反应。l 聚光色素:没有光化学活性,只有收集光能的作用,将光能聚集起来传给反应中心色素。包
10、括绝大多数的色素。l 原初反应:指光和作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程。l 希尔反应:在光照下,离体叶绿体类囊体能将含有高铁的化合物还原为低铁化合物并释放氧。l 光和链:在类囊体摸上的PSII和PSI之间几种排列紧密的电子传递体完成电子传递的总轨道。l 同化力:由于ATP和NADPH用于碳反应中CO2的同化,把这两种物质合称为同化力。l 卡尔文循环:CO2的受体是一种戊糖,CO2的固定的出产物是一种三碳化合物。l 景天酸代谢途径:植物在夜间气孔开放,利用C4途径固定CO2,形成苹果酸,贮存在液泡中,白天气孔关闭,将夜间固定的CO2释放出来,再经C3途径固定CO2的过程
11、。l 增益效应(爱默生效应):如果在远红光(大于685nm)照射下补充红光(650nm),量子产额大增,比单独用这两种波长的光照射时的总和还要高,这种效应称为增益效应。1.植物光合作用的光反应和碳反应是在细胞的哪些部位进行的?为什么?答:光反应在类囊体膜(光合膜)上进行的,碳反应在叶绿体的基质中进行的。原因:光反应必须在光下才能进行的,是由光引起的光化学反应,类囊体膜是光合膜,为光反应提供了光的条件;碳反应是在暗处或光处都能进行的,由若干酶催化的化学反应,基质中有大量的碳反应需要的酶。2.在光合作用过程中,ATP和NADPH是如何形成的?又是怎样被利用的?答:形成过程是在光反应的过程中。1)
12、非循环电子传递形成了NADPH:PSII和PSI共同受光的激发,串联起来推动电子传递,从水中夺电子并将电子最终传递给NADP+,产生氧气和NADPH,是开放式的通路。2) 循环光和磷酸化形成了ATP:PSI产生的电子经过一些传递体传递后,伴随形成腔内外H浓度差,只引起ATP的形成。3) 非循环光和磷酸化时两者都可以形成:放氧复合体处水裂解后,吧H释放到类囊体腔内,把电子传递给PSII,电子在光和电子传递链中传递时,伴随着类囊体外侧的H转移到腔内,由此形成了跨膜的H浓度差,引起ATP的形成;与此同时把电子传递到PSI,进一步提高了能位,形成NADPH,此外,放出氧气。是开放的通路。利用的过程是在
13、碳反应的过程中进行的。C3途径:甘油酸-3-磷酸被ATP磷酸化,在甘油酸-3-磷酸激酶催化下,形成甘油酸-1,3-二磷酸,然后在甘油醛-3-磷酸脱氢酶作用下被NADPH还原,形成甘油醛-3-磷酸。C4途径:叶肉细胞的叶绿体中草酰乙酸经过NADP-苹果酸脱氢酶作用,被还原为苹果酸。C4酸脱羧形成的C3酸再运回叶肉细胞,在叶绿体中,经丙酮酸磷酸双激酶催化和ATP作用,生成CO2受体PEP,使反应循环进行。3.试比较PSI和PSII的结构及功能特点。PSIIPSI位于类囊体的堆叠区,颗粒较大位于类囊体非堆叠区,颗粒小由12种不同的多肽组成由11种蛋白组成反应中心色素最大吸收波长680nm反应中心色素
14、最大吸收波长700nm水光解,释放氧气将电子从PC传递给Fd含有LHCII含有LHCI4.光和作用的氧气是怎样产生的?答:水裂解放氧是水在光照下经过PSII的放氧复合体作用,释放氧气,产生电子,释放质子到类囊体腔内。放氧复合体位于PSII类囊体膜腔表面。当PSII反应中心色素P680受激发后,把电子传递到脱镁叶绿色。脱镁叶绿素就是原初电子受体,而Tyr是原初电子供体。失去电子的Tyr又通过锰簇从水分子中获得电子,使水分子裂解,同时放出氧气和质子。6.光合作用的碳同化有哪些途径?试述水稻、玉米、菠萝的光合碳同化途径有什么不同? 答:有三种途径C3 途径、C4 途径和景天酸代谢途径。 途径C3C4
15、CAM植物种类温带植物(水稻)热带植物(玉米)干旱植物(菠萝)固定酶RubiscoPEPcase/RubiscoPEPcase/RubiscoCO2 受体RUBPRUBP/PEPRUBP/PEP初产物PGAOAAOAA7. 一般来说,C4植物比C3植物的光合产量要高,试从它们各自的光合特征以及生理特征比较分析。C3C4叶片结构无花环结构,只有一种叶绿体有花环结构,两种叶绿体叶绿素a/b2.8+-0.43.9+-0.6CO2固定酶RubiscoPEPcase/RubiscoCO2固定途径卡尔文循环C4途径和卡尔文循环最初CO2接受体RUBPPEP光合速率低高CO2补偿点高低饱和光强全日照1/2无
16、光合最适温度低高羧化酶对CO2亲和力低高,远远大于C3光呼吸高低总体的结论是,C4植物的光合效率大于C3植物的光合效率。8.从光呼吸的代谢途径来看,光呼吸有什么意义?答:光呼吸的途径:在叶绿体内,光照条件下,Rubisco把RUBP氧化成乙醇酸磷酸,之后在磷酸酶作用下,脱去磷酸产生乙醇酸;在过氧化物酶体内,乙醇酸氧化为乙醛酸和过氧化氢,过氧化氢变为洋气,乙醛酸形成甘氨酸;在线粒体内,甘氨酸变成丝氨酸;过氧化物酶体内形成羟基丙酮酸,最终成为甘油酸;在叶绿体内,产生甘油-3-磷酸,参与卡尔文循环。在干旱和高辐射期间,气孔关闭,CO2不能进入,会导致光抑制。光呼吸会释放CO2,消耗多余的能量,对光合
17、器官起到保护的作用,避免产生光抑制。在有氧条件下,通过光呼吸可以回收75%的碳,避免损失过多。有利于氮的代谢。9.卡尔文循环和光呼吸的代谢有什么联系?答:卡尔文循环产生的有机物的1/4通过光呼吸来消耗。氧气浓度高时,Rubisco作为加氧酶,是RUBP氧化,进行光呼吸;CO2高时,Rubisco作为羧化酶,使CO2羧化,进行卡尔文循环。光呼吸的最终产物是甘油酸-3-磷酸,参与到卡尔文循环中。10.通过学习植物水分代谢、矿质元素和光合作用知识之后,你认为怎样才能提高农作物的产量。答:合理灌溉。合理灌溉可以改善作物各种生理作用,还能改变栽培环境,间接地对作用发生影响。合理追肥。根据植物的形态指标和
18、生理指标确定追肥的种类和量。同时,为了提高肥效,需要适当的灌溉、适当的深耕和改善施肥的方式。光的强度尽量的接近于植物的光饱和点,使植物的光合速率最大,最大可能的积累有机物,但是同时注意光强不能太强,会产生光抑制的现象。栽培的密度适度的大点,肥水充足,植株繁茂,能吸收更多的CO2,但同时要注意光线的强弱,因为随着光强的增加CO2的利用率增加,光合速率加快。同时,可通过人工的增加CO2含量,提高光合速率。使作物在适宜的温度范围内栽植,使作物体内的酶的活性在较强的水平,加速光合作用的碳反应过程,积累更多的有机物。11.C3植物、C4植物和CAM在固定CO2方面的异同。C3C4CAM受体RUBPPEP
19、PEP固定酶RubiscoPEPcase/RubiscoPEPcase/Rubisco进行的阶段CO2羧化、CO2还原、更新CO2羧化、转变、脱羧与还原、再生羧化、还原、脱羧、C3途径初产物PGAOAAOAA能量使用先NADPH后ATP12.据你所知,叶子变黄可能与什么条件有关,请全面讨论。答:水分的缺失。水分是植物进行正常的生命活动的基础。矿质元素的缺失。有些矿质元素是叶绿素合成的元素,有些矿质元素是叶绿素合成过程中酶的活化剂,这些元素都影响叶绿素的形成,出现叶子变黄。光条件的影响。光线过弱时,植株叶片中叶绿素分解的速度大于合成的速度,因为缺少叶绿素而使叶色变黄。温度。叶绿素生物合成的过程中
20、需要大量的酶的参与,过高或过低的温度都会影响酶的活动,从而影响叶绿素的合成。叶片的衰老。叶片衰老时,叶绿素容易降解,数量减少,而类胡萝卜素比较稳定,所以叶色呈现出黄色。13.高O2浓度对光合过程有什么影响?答:对于光合过程有抑制的作用。高的O2浓度,会促进Rubisco的加氧酶的作用,更偏向于进行光呼吸,从而抑制了光合作用的进行。15.“霜叶红于二月花”,为什么霜降后枫叶变红?答:霜降后,温度降低,体内积累了较多的糖分以适应寒冷,体内的可溶性糖多了,就形成较多的花色素苷,叶子就呈红色的了。第四章 植物的呼吸作用l 呼吸作用:指生物体内的有机物质,通过氧化还原而产生CO2同时释放能量的过程。l
21、有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。l 无氧呼吸:指在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,同时释放能量的过程。l 糖酵解:胞质溶胶中的己糖在无氧状态或有氧状态下均能分解成丙酮酸的过程。l 三羧酸循环:糖酵解进行到丙酮酸后,在有氧条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解,直到形成水和CO2为止。l 呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总过程。l 呼吸商:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率。l 交替氧
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 植物 生理学 第七 版潘瑞炽编 课后 习题 答案 10
限制150内