立体几何中线面平行的经典方法-经典题(附详细解答)(共8页).doc





《立体几何中线面平行的经典方法-经典题(附详细解答)(共8页).doc》由会员分享,可在线阅读,更多相关《立体几何中线面平行的经典方法-经典题(附详细解答)(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。(1) 通过“平移”再利用平行四边形的性质1如图,四棱锥PABCD的底面是平行四边形,点E、F 分 别为棱AB、 PD的中点求证:AF平面PCE;(第1题图)分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形2、如图,已知直角梯形ABCD中,ABCD,ABBC,AB1,BC2,CD1,过A作AECD,
2、垂足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC.()求证:BC面CDE; ()求证:FG面BCD;分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形3、已知直三棱柱ABCA1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, ACBE. 求证:()C1DBC; ()C1D平面B1FM. 分析:连EA,易证C1EAD是平行四边形,于是MF/EA4、如图所示, 四棱锥PABCD底面是直角梯形, CD=2AB, E为PC的中点, 证明: ;分析::取PD的中点F,连EF,AF则易证ABEF是平行四边形(2) 利用三角形中位线的性质A
3、BCDEFGM5、如图,已知、分别是四面体的棱、的中点,求证:平面。分析:连MD交GF于H,易证EH是AMD的中位线6、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。 求证: PA 平面BDE 7如图,三棱柱ABCA1B1C1中, D为AC的中点. 求证:AB1/面BDC1; 分析:连B1C交BC1于点E,易证ED是B1AC的中位线8、如图,平面平面,四边形与都是直角梯形,分别为的中点()证明:四边形是平行四边形;()四点是否共面?为什么?(.3) 利用平行四边形的性质9正方体ABCDA1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O/平面A1BC1;分析
4、:连D1B1交A1C1于O1点,易证四边形OBB1O1是平行四边形PEDCBA10、在四棱锥P-ABCD中,ABCD,AB=DC,.求证:AE平面PBC;分析:取PC的中点F,连EF则易证ABFE是平行四边形11、在如图所示的几何体中,四边形ABCD为平行四边形,ACB=,平面,EF,.=.()若是线段的中点,求证:平面;()若=,求二面角-的大小(I)证法一:因为EF/AB,FG/BC,EG/AC,所以由于AB=2EF,因此,BC=2FC,连接AF,由于FG/BC,在中,M是线段AD的中点,则AM/BC,且因此FG/AM且FG=AM,所以四边形AFGM为平行四边形,因此GM/FA。又平面AB
5、FE,平面ABFE,所以GM/平面AB。(4)利用对应线段成比例12、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且=, 求证:MN平面SDC分析:过M作ME/AD,过N作NF/AD利用相似比易证MNFE是平行四边形AFAEABACADAMANA13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN求证:MN平面BEC分析:过M作MG/AB,过N作NH/AB利用相似比易证MNHG是平行四边形(5)利用面面平行14、如图,三棱锥中,底面,PB=BC=CA,为的中点,为的中点,点在上,且.(1)求证:平面;(2)求证:平面;分析: 取AF的中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 中线 平行 经典 方法 详细 解答

限制150内