立体几何多面体与外接球问题专项归纳(共3页).doc
《立体几何多面体与外接球问题专项归纳(共3页).doc》由会员分享,可在线阅读,更多相关《立体几何多面体与外接球问题专项归纳(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上立体几何多面体与外接球问题专项归纳1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是()A.16B.20C.24D.322、一个正四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为()A.3B.4C.3D.63.在半球内有一个内接正方体,试求这个半球的体积与正方体的体积之比.4.一个正四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为()A.3B.4C.3D.61、答案:C解:由题意知,该棱柱是一个长方体,其长、宽、高分别为2,2,4.所以其外接球的半径R=.所以球的表面积是
2、S=4R2=24.2、答案:A以四面体的棱长为正方体的面对角线构造正方体,则正方体内接于球,正方体棱长为1,则体对角线长等于球的直径,即2R=,所以S球=4R2=3.3、解将半球补成整个的球(见题中的图),同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体刚好是这个球的内接长方体,那么这个长方体的体对角线便是它的外接球的直径.设原正方体棱长为a,球的半径为R,则根据长方体的对角线性质,得(2R)2=a2+a2+(2a)2,即4R2=6a2.所以R=a.从而V半球=R3=a3,V正方体=a3.因此V半球V正方体=a3a3=2.4答案:A解析:以PA,PB,PC为棱作长方体,则该长方体的外接球就是三棱锥P-ABC的外接球,所以球的半径R=2,所以球的表面积是S=4R2=16.专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 多面体 外接 问题 专项 归纳
限制150内