应用一次函数知识解决实际问题说课稿-人教版(新教案)(共4页).doc
《应用一次函数知识解决实际问题说课稿-人教版(新教案)(共4页).doc》由会员分享,可在线阅读,更多相关《应用一次函数知识解决实际问题说课稿-人教版(新教案)(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上应用一次函数知识解决实际问题说课一、教材分析: 地位与作用初中数学教学大纲提出,要“学会运用数学知识,解决简单的实际问题,并在这个过程中提高学生学习数学的兴趣,增强用数学的意识” 。纵观近年来全国各省市的中考试题,不难发现,函数应用题的数量逐年增加,这类考题摆脱了以往传统的模式,构思新颖、贴近实际生活,不但富有时代气息,而且考查和增强了学生应用数学的能力和意识。教材函数及其图象、一次函数中的学习要求是“能够把实际问题中的一次函数和正比例函数用解析式表示出来”。而初三中考备考复习课应源于教材,高于教材的。通过复习课的学习,将会对课本知识起到巩固与深化的作用,并且在探究如
2、何运用课本知识、思想方法将实际问题抽象成为数学模型,再将所得模型进行转换和运算,从实际问题中建立数学模型的同时,树立学生学习数学、应用数学、改造数学、发展数学的观念,培养学生的创新意识。因此对于这一内容应将其作为掌握的重点来学习。“应用一次函数知识解决实际问题”的整个过程中蕴含着丰富的数学思想和方法。通过这一问题的探究性学习,有利于帮助学生树立已知与未知,特殊与一般在一定条件下可以转化的建模思想、数形结合思想、集合与对应思想等,使学生进一步学会分类讨论和把一般问题化为特殊问题的化归与转化思考方法,掌握用变量和函数来思考问题的函数的思想方法,提高学生的分析综合能力。 重点与难点 依据本课时的地位
3、与作用,及现代教学理念确定本节课的教学重点为:引导学生联系生活事例充分经历体验一次函数解析式的构造、建立的全过程,并能熟练地把实际问题中的一次函数和正比例函数用解析式表示出来。培养学生建模意识、用变量和函数来思考问题的函数的思想方法。引导学生探究确定函数自变量取值范围和已知自变量的值求函数值的方法,初步建立集合与对应思想。由于函数具有较高的抽象性和动态变化过程,其中蕴含众多的数学思想,初三学生虽然具备了一定的推理能力和分析综合能力,但要求学生自主发现实际问题的不同取值范围还是比较困难的,而自变量的取值范围,又决定了函数值的变化范围因此,确定本节课的难点是:确定函数自变量取值范围。二、教学目标:
4、 知识:经历探究一次函数解析式及自变量和函数值取值范围的建立过程,使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式及自变量的取值范围。 能力:引导学生充分经历观察、实验、猜想等数学活动过程,培养学生观察、分析问题和解决问题的能力;能有条理地、清晰地阐述自己的观点。学会从数学的角度发现问题、理解问题, 并能综合运用所学知识技能解决问题,形成解决实际问题的一些基本策略,通过一题多问,体验解决问题的多样性,发展实践能力与创新精神,通过师与生,生与生的交流与讨论学会与人合作,并能与他人交流思维的过程和结果,和初步形成评价与反思的意识。 情感:引导学生参与整个数学学习活动,激发对数学好奇
5、心与求知欲,同时获得成功的体验,锻炼克服困难意识,建立自信心,体验探索与创造的快乐,形成实事求是的态度以及进行质疑和独立思考的习惯。培养学生会运用运动、变化的观点思考问题,使学生体会事物是互相联系和有规律地变化着的,向学生进行生动具体的知识来源于实践反过来又作用于实践的辩证唯物主义教育。三、 教材的处理: 创设问题情境,复习函数的意义,常量、变量的意义,分清自变量和函数,复习一次函数与正比例函数的概念,通过例题的探究分析,向学生进行数学来源于实践又反过来作用于实践的观点的教育。逐步形成对一次函数知识与解决实际问题的关系的认识,用变量和函数来思考问题的函数的思想方法。教师适时引导,帮助学生认识重
6、点。 先通过引导学生从所创设问题情境最简单的特殊情形入手,进行自变量和函数值取值范围的探索猜想,然后再推广到一般的情形,使学生明确:在用解析式表示函数时,要考虑自变量的取值必须使函数有意义,教师作恰当的引导,帮助学生突破难点。 在应用上充分挖掘所创设问题情境的不同情况,采用逐步变换问句的方法得到的不同的结论,达到一题多用,一题多变的效果,引导学生尝试函数的动态过程,使学生体会事物是互相联系和有规律地变化着的。掌握“应用一次函数知识解决实际问题”的方法。整个过程中,鼓励学生自主探索与合作交流,使整个学习过程充满观察、实验、猜想、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效
7、的学习策略。提高学生的分析问题、解决问题和类比、归纳的能力。这样使数学的学习方式不再是单一的,枯燥的,以被动听讲和练习为主的方式:它是一个生动活泼,主动的和富有个性的充满生命力的过程。四、教法设计:教法引导发现,探索讨论 引导学生充分经历数学知识的形成与运用过程。 学生通过这一过程,让已经存在于学生头脑中的那些不那么正规的数学知识和数学体验上升发展为科学论证,从中感受到发现的乐趣,增进学习数学的信心,形成创新意识。 () 鼓励学生自主探索与合作交流。有效的数学学习过程, 不能单纯地依赖模仿与记忆,教师应引导学生主动地从事观察、实验、猜想、验证、推理与交流等数学活动,从而使学生形成自己对数学知识
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 一次 函数 知识 解决 实际问题 说课稿 人教版 教案
限制150内