专题二:数列综合测试题(共9页).doc
《专题二:数列综合测试题(共9页).doc》由会员分享,可在线阅读,更多相关《专题二:数列综合测试题(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 复习数列习题 一选择题(60分)1在等差数列中,有,则此数列的前13项之和为( )A52 B26 C13 D1562等差数列的前项和为,若( )A36B18C72D93已知等差数列的公差, 若, , 则该数列的前n项和的最大值为( ).A. 50 B. 45 C. 40 D. 354.已知等比数列an,a2a3=1,则使不等式(a1-)+(a2-)+(an-)0成立的最大自然数n是 A4 B.5 C.6 t x D.75.已知等差数列的前项和为,且满足,则等于 A. B. C.1 D.26等差数列中,,则此数列前20项和等于A.160 B.180 C.200 D.2
2、20 7.在等差数列an中,a1+a2+a50=200,a51+a52+a100=2700,则a1等于 A-1221 B.-21.5 C.-20.5 D.-20 8在正项等比数列an中,a1、a99是方程x210x + 16 = 0的两个根,则a40a50a60的值为( )A32 B64 C64 D2569等比数列的前n项和为Sn,已知S4=1,S8=3,则的值为A. 32 B. 16 C. 8 D. 410等差数列的前n项和记为Sn,若a2+a4+a15=p(常数),则数列中也是常数的项是( ) (A)S7 (B)S8 (C)S13 (D)S1511.已知数列log3(an+1)(nN*)为
3、等差数列,且a1=2,a2=8,则+ A B. C. D.112、已知是等比数列,对任意都有,如果,则A.5 B.10 C.15 D.20二填空题(16分)13若四个正数a,b,c,d成等差数列,x是a和d的等差中项,y是b和c的等比中项,则x和y的大小关系是 . 14.在等比数列an中,a3+a5=18,a9+a11=144,则a5+a8=_. 15把49个数排成如图4所示的数表,若表中每行的7个数自左至右依次都成等差数列,每列的7个数自上而下依次也都成等差数列,且正中间的数a=1,则表中所有数的和为 _.16已知等差数列的前项和为,若且,则= 。三解答题(74分)17函数f(x)=a0+a
4、1x+a2x2+a3x3+anxn(nN*),且y= f(x)的图象经过点(1,n2),数列an(nN*)为等差数列.(1)求数列an通项公式;(2)当n为奇数时,设g(x)= f(x)- f(-x),是否存在自然数m和M,使不等式mg()M恒成立,若存在,求出M-m的最小值;若不存在,说明理由.18. 设A(x1,y1),B(x2,y2)是函数f(x)=的图象上任意两点,且,已知点M的横坐标为.(1) 求证:M点的纵坐标为定值; (2) 若Sn=f(N*,且n2,求Sn;(3) 已知an=,其中nN*. Tn为数列an的前n项和,若Tn(Sn+1+1)对一切nN*都成立,试求的取值范围.19
5、(本题满分12分) 对于函数 ,若存在 ,使 成立,则称为的“滞点”。已知函数f ( x ) = .(I)试问有无“滞点”?若有求之,否则说明理由;(II)已知数列的各项均为负数,且满足,求数列的通项公式;(III)已知,求的前项和。20已知数列a的前n项和为S,满足S=2a-2n(nN)(1)求数列a的通项公式a;(2)若数列b满足b=log(a+2),T为数列的前n项和,求证T;21. (本题满分12分) 已知数列an的前三项与数列bn的前三项对应相同,且a1+2a2+22a3+2n-1an=8n对任意的nN*都成立,数列bn+1-bn是等差数列.(1) 求数列an与bn的通项公式;(2)
6、问是否存在kN*,使得bk-ak(0,1)?请说明理由.22(文)已知数列是等比数列,数列满足 ,记.(1)若数列的首项a1=1 000,公比q=110,求数列的通项公式;(2)在(1)的条件下,求Sn的最大值;(3)是否存在实数k,使得对于任意的正整数n恒成立?若存在,请求出实数k的值;若不存在,请说明理由.答案一 选择题123456789101112BABBBBCBBCAA二填空题13xy ;14. 36;15. 49;16.10。三解答题17解:(1)据题意:f(1)=n2 即a0+a1+a2+a3+an= n2令n=1 则a0+a1=1,a1=1a0 令n=2 则a0+a1+a2=22
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 数列 综合测试
限制150内