中考数学专题练习全等三角形的判定与性质(共33页).docx
《中考数学专题练习全等三角形的判定与性质(共33页).docx》由会员分享,可在线阅读,更多相关《中考数学专题练习全等三角形的判定与性质(共33页).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 2019中考数学专题练习-全等三角形的判定与性质(含解析)一、单选题1.如图:在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:AED=CED;OE=OD;BEHHDF;BCCF=2EH;AB=FH其中正确的结论有()A.5个B.4个C.3个D.2个2.如图,在等腰RtABC中,C=90,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE连接DE、DF、EF在此运动变化过程中,下列结论:DFE是等腰直角三角形;四边形CDFE不可能为正方形;CDE与DA
2、F不可能全等;四边形CDFE的面积保持不变;CDE面积的最大值为8其中正确的结论是()A.B.C.D.3.如图,已知ACB=90,AC=BC,BECE,ADCE于点D,AD=2.5 cm,DE=1.7 cm,则BE=( )A.1 cmB.0.8 cmC.4.2 cmD.1.5 cm4.如图,在ABC中,ABC=45,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cmB.6cmC.8cmD.9cm5.如图所示,AC=CD,B=E=90,ACCD,则不正确的结论是( ) A.AC=BC+CEB.A=2C.ABCCEDD.A与D互余6.如图,E=F=90,B=C,AE=AF,则下列结
3、论:1=2;BE=CF; CD=DN;ACNABM,其中正确的有()A.4个B.3个C.2个D.1个7.如图,OAOB,OCOD,O50,D35,则AEC等于()A.60B.50C.45D.308.如图,点P是AB上任意一点,ABC=ABD,还应补充一个条件,才能推出APCAPD从下列条件中补充一个条件,不一定能推出APCAPD的是()A.BC=BDB.AC=ADC.ACB=ADBD.CAB=DAB9.下列判断不正确的是( ) A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等10.如图,已知AB=AC,AD=AE,BAC=DA
4、E下列结论不正确的是( ) A.BAD=CAEB.ABDACEC.AB=BCD.BD=CE11.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明AOC=BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等12.如图所示,两个完全相同的含30角的RtABC和RtAED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且DAB=30,以下三个结论:AFBC;ADGACF;O为BC的中点;AG=BG其中正确的个数为( ) A.1B.2C.3D.413.如图,点A,D,C,E在同一条直线上,ABEF,AB=EF,B=F,AE=10,AC=7,则CD的
5、长为( )A.5.5B.4C.4.5D.314.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作APB的平分线PC交AB于点CB.过点P作PCAB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PCAB,垂足为C二、填空题15.如图,E=F=90,B=C,AE=AF,下列结论: EM=FN,CD=DN,FAN=EAMACNABM其中正确的有_16.如图,已知ABC三个内角的平分线交于点O,延长BA到点D,使AD=AO,连接DO,若BD=BC,ABC=54,则BCA的度数为_17.如图,已知ABAC
6、,12,BC,则BDCE请说明理由:解:121BAC2_即_DAB在ABD和ACE中,B_(已知)AB_(已知)EAC_(已证)ABDACE(_)BDCE(_) 18.如图,AC是矩形ABCD的对角线,AB=2,BC= ,点E,F分别是线段AB,AD上的点,连接CE,CF,当BCE=ACF,且CE=CF时,AE+AF=_.19.如图,以RtABC的斜边AB为一边在ABC同侧作正方形ABEF点O为AE与BF的交点,连接CO若CA=2,CO=,那么CB的长为_. 20.如图,在等腰直角ACB中,ACB=90,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且DOE=90,DE交OC于点P有下
7、列结论:DEO=45;AODCOE;S四边形CDOE=SABC;OD2=OPOC其中正确的结论序号为_(把你认为正确的都写上)21.如图,已知点C是AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为_OCE=OCF;OEC=OFC;EC=FC;EFOC 三、解答题22.如图,已知PBAB , PCAC,且PB =PC,D 是AP上的一点,求证: 23.已知:如图,ABAE,12,BE.求证:BCED.24.如图,点E、F分别在正方形ABCD的边DC、BC上,AGEF,垂足为G,且AGAB,则EAF为多少度25.已
8、知如图,D、E分别在AB和AC上,CD、BE交于O,AD=AE,BD=CE求证:OB=OC 26.如图,ABC中,ACB=90,延长AC到D,使得CD=CB,过点D作DEAB于点E,交BC于F求证:AB=DF27.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EAAF求证:DEBF28.如图,在ABF与CDE中,AB=CD,BF=DE,点A,E,F,C在同一条直线上,AE=CF,求证:ABCD 29.已知:如图,AD=BC,AB=DC,求证:A=C 答案解析部分一、单选题1.如图:在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并
9、延长交CD于点F,连接DE交BF于点O,有下列结论:AED=CED;OE=OD;BEHHDF;BCCF=2EH;AB=FH其中正确的结论有()A.5个B.4个C.3个D.2个【答案】B 【考点】全等三角形的判定与性质 【解析】【解答】;解:四边形ABCD是矩形,BAD=ABC=C=ADC=90,AB=DC,ADBC,ADE=CED,BAD的平分线交BC于点E,BAE=DAH=45,ABE和ADH是等腰直角三角形,AE=AB,AD=AH,AD=AB=AH,AD=AE,AB=AH=DH=DC,ADE=AED,AED=CED,正确;DAH=ADH=45,ADE=AED=67.5,BAE=45,AHB
10、=ABH=67.5,OHE=67.5,OHE=AED,OE=OH,同理:OD=OH,OE=OD,正确;ABH=AHB=67.5,HBE=FHD,在BEH和HDF中,BEHHDF(ASA),正确;BCCF=2HE正确,过H作HKBC于K,可知KC=BC,HK=KE,由上知HE=EC,BC=KE十Ec,又KE=HK=FC,HE=EC,故BC=HK+HE,BC=2HK+2HE=FC+2HE正确;不正确;故选:B【分析】先证明ABE和ADH等腰直角三角形,得出AD=AE,AB=AH=DH=DC,得出ADE=AED,即可得出正确;先证出OE=OH,同理:OD=OH,得出OE=OD,正确;由ASA证出BE
11、HHDF,得出正确;过H作HKBC于K,可知KC=BC,HK=KE,得出BC=HK+HE,BC=2HK+2HE=FC+2HE,得出正确2.如图,在等腰RtABC中,C=90,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE连接DE、DF、EF在此运动变化过程中,下列结论:DFE是等腰直角三角形;四边形CDFE不可能为正方形;CDE与DAF不可能全等;四边形CDFE的面积保持不变;CDE面积的最大值为8其中正确的结论是()A.B.C.D.【答案】D 【考点】全等三角形的判定与性质 【解析】【解答】解:连接CF;ABC是等腰直角三角形,FCB=A=45,CF=AF=
12、FB;AD=CE,ADFCEF;EF=DF,CFE=AFD;AFD+CFD=90,CFE+CFD=EFD=90,EDF是等腰直角三角形当D、E分别为AC、BC中点时,四边形CDFE是正方形ADFCEF,SCEF=SADFS四边形CEFD=SAFC 由于DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DFAC时,DE最小,此时DF=BC=4DE=DF=4;当CEF面积最大时,此时DEF的面积最小此时SCEF=S四边形CEFDSDEF=SAFCSDEF=168=8则结论正确的是故选D【分析】作常规辅助线连接CF,由SAS定理可证CFE和ADF全等,从而可证DFE=90,DF=EF所以DE
13、F是等腰直角三角形;由割补法可知四边形CDFE的面积保持不变;DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,CDE最大的面积等于四边形CDEF的面积减去DEF的最小面积3.如图,已知ACB=90,AC=BC,BECE,ADCE于点D,AD=2.5 cm,DE=1.7 cm,则BE=( )A.1 cmB.0.8 cmC.4.2 cmD.1.5 cm【答案】B 【考点】全等三角形的判定与性质 【解析】【分析】根据BECE,ADCE得E=ADC,则CAD+ACD=90,再由ACB=90,得BCE+ACD=90,则BCE=CAD,从而证出BCECAD,进而得出BE的
14、长【解答】ADCE,E=ADC=90,即CAD+ACD=90,ACB=90,BCE+ACD=90,BCE=CAD,又AC=BC,BCECAD(AAS),CE=AD,BE=CD,AD=2.5cm,DE=1.7cm,BE=CD=CE-DE=2.5-1.7=0.8cm故选B【点评】本题考查了全等三角形的判定和性质,是基础知识要熟练掌握4.如图,在ABC中,ABC=45,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cmB.6cmC.8cmD.9cm【答案】C 【考点】全等三角形的判定与性质 【解析】【分析】F是高AD和BE的交点,ADC=ADB=AEF=90,CAD+AFE=90,D
15、BF+BFD=90,AFE=BFD,CAD=FBD,ADB=90,ABC=45,BAD=45=ABD。AD=BD,在DBF和DAC中,FBDCAD,FDBCDA,DBAD,DBFDAC。BF=AC=8cm.故选C.5.如图所示,AC=CD,B=E=90,ACCD,则不正确的结论是( ) A.AC=BC+CEB.A=2C.ABCCEDD.A与D互余【答案】A 【考点】全等三角形的判定与性质 【解析】【解答】解:B=E=90, A+1=90,D+2=90,ACCD,1+2=90,A=2,故B正确;A+D=90,故D正确;在ABC和CED中,ABCCED(AAS),故C正确;AB=CE,DE=BC,
16、BE=AB+DE,故A错误故选:A【分析】利用同角的余角相等求出A=2,再利用“角角边”证明ABC和CDE全等,根据全等三角形对应边相等,对应角相等,即可解答6.如图,E=F=90,B=C,AE=AF,则下列结论:1=2;BE=CF; CD=DN;ACNABM,其中正确的有()A.4个B.3个C.2个D.1个【答案】B 【考点】全等三角形的判定与性质 【解析】【分析】由E=F=90,B=C,AE=AF,根据直角三角形全等的判定得到RtABERtACF,则BE=C,EAB=FAC得到正确;易证RtAEMRtAFN,得到AM=AN,则MC=BN,易证得ACNABM,得到正确;DMCDMB,则DC=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 练习 全等 三角形 判定 性质 33
限制150内