新课程高中数学测试题组(必修4)含答案(共47页).doc
《新课程高中数学测试题组(必修4)含答案(共47页).doc》由会员分享,可在线阅读,更多相关《新课程高中数学测试题组(必修4)含答案(共47页).doc(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上目录:数学4(必修)数学4(必修)第一章:三角函数(上、下)基础训练A组数学4(必修)第一章:三角函数(上、下)综合训练B组 数学4(必修)第一章:三角函数(上、下)提高训练C组数学4(必修)第二章:平面向量 基础训练A组数学4(必修)第二章:平面向量 综合训练B组数学4(必修)第二章:平面向量 提高训练C组数学4(必修)第三章:三角恒等变换 基础训练A组数学4(必修)第三章:三角恒等变换 综合训练B组数学4(必修)第三章:三角恒等变换 提高训练C组 (数学4必修)第一章 三角函数(上)基础训练A组一、选择题1设角属于第二象限,且,则角属于( )A第一象限 B第二象限
2、 C第三象限 D第四象限2给出下列各函数值:;.其中符号为负的有( )A B C D3等于( )A B C D4已知,并且是第二象限的角,那么的值等于( )A. B. C. D.5若是第四象限的角,则是( )A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角6的值( )A.小于 B.大于 C.等于 D.不存在二、填空题1设分别是第二、三、四象限角,则点分别在第_、_、_象限2设和分别是角的正弦线和余弦线,则给出的以下不等式:; ;,其中正确的是_。3若角与角的终边关于轴对称,则与的关系是_。4设扇形的周长为,面积为,则扇形的圆心角的弧度数是 。5与终边相同的最小正角是_。三
3、、解答题1已知是关于的方程的两个实根,且,求的值2已知,求的值。3化简:4已知,求(1);(2)的值。(数学4必修)第一章 三角函数(上) 综合训练B组一、选择题1若角的终边上有一点,则的值是( )A B C D 2函数的值域是( )A B C D 3若为第二象限角,那么,中,其值必为正的有( )A个 B个 C个 D个4已知,那么( )A B C D 5若角的终边落在直线上,则的值等于( )A B C或 D6已知,那么的值是( )A B C D 二、填空题1若,且的终边过点,则是第_象限角,=_。2若角与角的终边互为反向延长线,则与的关系是_。3设,则分别是第 象限的角。4与终边相同的最大负角
4、是_。5化简:=_。三、解答题1已知求的范围。2已知求的值。3已知,(1)求的值。(2)求的值。4求证:新课程高中数学训练题组(咨询)(数学4必修)第一章 三角函数(上) 提高训练C组一、选择题1化简的值是( )A B C D2若,则的值是( )A B C D3若,则等于( )A B C D4如果弧度的圆心角所对的弦长为,那么这个圆心角所对的弧长为( )A B C D5已知,那么下列命题成立的是( )A.若是第一象限角,则B.若是第二象限角,则C.若是第三象限角,则D.若是第四象限角,则子曰:温故而知新,可以为师矣。6若为锐角且,则的值为( )A B C D二、填空题1已知角的终边与函数决定的
5、函数图象重合,的值为_2若是第三象限的角,是第二象限的角,则是第 象限的角.3在半径为的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截面顶角为,若要光源恰好照亮整个广场,则其高应为_(精确到)4如果且那么的终边在第 象限。5若集合,则=_。三、解答题1角的终边上的点与关于轴对称,角的终边上的点与关于直线对称,求之值2一个扇形的周长为,求扇形的半径,圆心角各取何值时,此扇形的面积最大?3求的值。4已知其中为锐角,求证:新课程高中数学训练题组(咨询)(数学4必修)第一章 三角函数(下) 基础训练A组一、选择题1函数是上的偶函数,则的值是( )A B C. D.2将函数的图象上所
6、有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A B C. D.3若点在第一象限,则在内的取值范围是( )A B.C. D.4若则( )A B C D5函数的最小正周期是( )A B C D6在函数、中,最小正周期为的函数的个数为( )A个 B个 C个 D个二、填空题1关于的函数有以下命题: 对任意,都是非奇非偶函数;不存在,使既是奇函数,又是偶函数;存在,使是偶函数;对任意,都不是奇函数.其中一个假命题的序号是 ,因为当 时,该命题的结论不成立.2函数的最大值为_.3若函数的最小正周期满足,则自然数的值为_.4满足的的集合为_。5若在
7、区间上的最大值是,则=_。三、解答题1画出函数的图象。2比较大小(1);(2)3(1)求函数的定义域。(2)设,求的最大值与最小值。4若有最大值和最小值,求实数的值。新课程高中数学训练题组(咨询)(数学4必修)第一章 三角函数(下) 综合训练B组一、选择题1方程的解的个数是( )A. B. C. D.2在内,使成立的取值范围为( )A B C D 3已知函数的图象关于直线对称,则可能是( )A. B. C. D.4已知是锐角三角形,则( )A. B. C. D.与的大小不能确定5如果函数的最小正周期是,且当时取得最大值,那么( )子曰:知之者不如好之者,好之者不如乐之者。A. B. C. D.
8、6的值域是( )A B C D 二、填空题1已知是第二、三象限的角,则的取值范围_。2函数的定义域为,则函数的定义域为_.3函数的单调递增区间是_.4设,若函数在上单调递增,则的取值范围是_。5函数的定义域为_。三、解答题1(1)求函数的定义域。 (2)设,求的最大值与最小值。2比较大小(1);(2)。3判断函数的奇偶性。4设关于的函数的最小值为,试确定满足的的值,并对此时的值求的最大值。 新课程高中数学训练题组(咨询)(数学4必修)第一章 三角函数(下) 提高训练C组一、选择题1函数的定义城是( )A. B.C. D.2已知函数对任意都有则等于( )A. 或 B. 或 C. D. 或3设是定
9、义域为,最小正周期为的函数,若则等于( )A. B. C. D.4已知, ,为凸多边形的内角,且,则这个多边形是( )A正六边形 B梯形 C矩形 D含锐角菱形5函数的最小值为( )A B C D6曲线在区间上截直线及所得的弦长相等且不为,则下列对的描述正确的是( )A. B. C. D.二、填空题1已知函数的最大值为,最小值为,则函数的最小正周期为_,值域为_.2当时,函数的最小值是_,最大值是_。3函数在上的单调减区间为_。4若函数,且则_。5已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向左平移,这样得到的曲线和的图象相同,则已知函数的解析式为_
10、.三、解答题1求使函数是奇函数。2已知函数有最大值,试求实数的值。3求函数的最大值和最小值。 4已知定义在区间上的函数的图象关于直线对称,xyo-1当时,函数,其图象如图所示.(1)求函数在的表达式;(2)求方程的解. 新课程高中数学训练题组 子曰:由! 诲女知之乎! 知之为知之,不 知为不知,是知也。根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!辅导咨询电话:,李老师。(数学4必修)第二章 平面向量 基础训练A组一、选择题1化简得( )A B C D2设分别是与向的单位向量,则下列结论中正确的是( )A B C D3已知下列命
11、题中:(1)若,且,则或,(2)若,则或(3)若不平行的两个非零向量,满足,则(4)若与平行,则其中真命题的个数是( )A B C D4下列命题中正确的是( )A若ab0,则a0或b0 B若ab0,则abC若ab,则a在b上的投影为|a| D若ab,则ab(ab)25已知平面向量,且,则( )A B C D6已知向量,向量则的最大值,最小值分别是( )A B C D二、填空题1若=,=,则=_2平面向量中,若,=1,且,则向量=_。3若,,且与的夹角为,则 。4把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是_。5已知与,要使最小,则实数的值为_。三、解答题AGEFCBD
12、1如图,中,分别是的中点,为交点,若=,=,试以,为基底表示、2已知向量的夹角为,,求向量的模。3已知点,且原点分的比为,又,求在上的投影。4已知,当为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?新课程高中数学训练题组(咨询) (数学4必修)第二章 平面向量 综合训练B组一、选择题1下列命题中正确的是( )A BC D2设点,,若点在直线上,且,则点的坐标为( )A B C或 D无数多个3若平面向量与向量的夹角是,且,则( )A B C D4向量,若与平行,则等于A B C D5若是非零向量且满足, ,则与的夹角是( )A B C D6设,且,则锐角为( )A B C D二、
13、填空题1若,且,则向量与的夹角为2已知向量,若用和表示,则=_。3若,,与的夹角为,若,则的值为 4若菱形的边长为,则_。5若=,=,则在上的投影为_。三、解答题1求与向量,夹角相等的单位向量的坐标2试证明:平行四边形对角线的平方和等于它各边的平方和3设非零向量,满足,求证: 4已知,其中(1)求证: 与互相垂直;(2)若与的长度相等,求的值(为非零的常数)新课程高中数学训练题组(咨询) (数学4必修)第二章 平面向量 提高训练C组一、选择题1若三点共线,则有( )A B C D2设,已知两个向量,则向量长度的最大值是( )A. B. C. D.3下列命题正确的是( )A单位向量都相等 B若与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课程 高中数学 测试 必修 答案 47
限制150内