椭圆和双曲线基础题练习题及答案(共6页).doc
《椭圆和双曲线基础题练习题及答案(共6页).doc》由会员分享,可在线阅读,更多相关《椭圆和双曲线基础题练习题及答案(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上圆锥曲线基础测试题一、选择题( 60 )1已知椭圆的两个焦点为、,且,弦AB过点,则的周长为( ) (A)10 (B)20 (C)2(D) 2椭圆上的点P到它的左准线的距离是10,那么点P 到它的右焦点的距离是( ) (A)15 (B)12 (C)10 (D)83椭圆的焦点、,P为椭圆上的一点,已知,则的面积为( ) (A)9 (B)12 (C)10 (D)84以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )(A) (B)(C)或 (D)或5双曲线右支点上的一点P到右焦点的距离为2,则P点到左准线的距离为( ) (A)6 (B)8 (C)10 (
2、D)126过双曲线的右焦点F2有一条弦PQ,|PQ|=7,F1是左焦点,那么F1PQ的周长为( ) (A)28 (B)(C)(D)7双曲线虚轴上的一个端点为M,两个焦点为F1、F2,则双曲线的离心率为( ) (A)(B)(C)(D)8在给定双曲线中,过焦点垂直于实轴的弦长为,焦点到相应准线的距离为,则该双曲线的离心率为( C )A、 B、2 C、 D、29 如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是( )(A)(B)(C)(D)10 如果双曲线上一点到双曲线右焦点的距离是2,那么点到轴的距离是(A )A、 B、 C、 D、11 中心在原点,焦点在y轴的椭圆方程是 ,则 ( )A
3、B C D12 已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率为( A )w.w.w.k.s.5.u.c.o.m A、 B、 C、 D、二、填空题( 20 )13 与椭圆具有相同的离心率且过点(2,-)的椭圆的标准方程是 。14 离心率,一条准线为的椭圆的标准方程是 。15 以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 9 16已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是 三、解答题( 70 )17) 已知椭圆C的焦点F1(,0)和F2(,0),长轴长6,设直线交椭圆C于A、B两点,求线段AB的中点坐标。18) 已知双曲线与椭
4、圆共焦点,它们的离心率之和为,求双曲线方程.19)求两条渐近线为且截直线所得弦长为的双曲线方程。20(1)椭圆C:(ab0)上的点A(1,)到两焦点的距离之和为4,求椭圆的方程; (2)设K是(1)中椭圆上的动点, F1是左焦点, 求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两点,P是椭圆上任意一点, 当直线PM、PN的斜率都存在并记为kPM、kPN时,那么是与点P位置无关的定值。试对双曲线 写出具有类似特性的性质,并加以证明。解:(1) (2)设中点为(x,y), F1(-1,0) K(-2-x,-y)在上 (3)设M(x1,y1), N(-x1,-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 双曲线 基础 练习题 答案
限制150内