新人教版七上整式的加减全部教案(共23页).doc
《新人教版七上整式的加减全部教案(共23页).doc》由会员分享,可在线阅读,更多相关《新人教版七上整式的加减全部教案(共23页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第1课时:整式(1)教学内容:教科书第5456页,2.1整式:1单项式。教学目标和要求:1理解单项式及单项式系数、次数的概念。2会准确迅速地确定一个单项式的系数和次数。3初步培养学生观察、分析、抽象、概括等思维能力和应用意识。4通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。难点:单项式概念的建立。教学方法:分层次教学,讲授、练习相结合。教学过程:一、复习引入:1、 列代数式(1)若正方形的边长为a,则正方形的面积是 ;(2)若三
2、角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;(3)若x表示正方形棱长,则正方形的体积是 ;(4)若m表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)2、 请学生说出所列代数式的意义。3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。由小组讨论后,经小组推荐人员回答,教师适当点拨。(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的
3、激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)二、讲授新课:1单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。2练习:判断下列各代数式哪些是单项式?(1); (2)abc; (3)b2; (4)5ab2; (5)y; (6)xy2; (7)5。(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3单项式系数和次数:直接引导学生进一步观察单项式结构,
4、总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2r,abc,m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。4例题:例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。x1; ; r2; a2b。答:不是,因为原代数式中出现了加法运算;不是,因为原代数式是1与x的商;是,它的系数是,次数是2; 是,它的系数是,次数是3。例2:下面各题的判断是否正确?7xy2的系数是7; x2y3与x3没有系数; ab3c2的次数是03
5、2;a3的系数是1; 32x2y3的次数是7; r2h的系数是。通过其中的反例练习及例题,强调应注意以下几点:圆周率是常数;当一个单项式的系数是1或1时,“1”通常省略不写,如x2,a2b等;单项式次数只与字母指数有关。5游戏:规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)6课堂练习:课本p56:1,2。三、课堂小结:单项式及单项式的系数、次
6、数。根据教学过程反馈的信息对出现的问题有针对性地进行小结。通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。四、课堂作业: 课本p59:1,2。板书设计: 单项式1单项式的定义: 2例1: 例2: 学生练习: 教学后记:本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、
7、次数,为进一步学习新知做好铺垫。针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。第2课时:整式(2)教学内容:教科书第5659页,2.1整式:2多项式。教学目标和要求:1通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。2通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新
8、。3初步体会类比和逆向思维的数学思想。教学重点和难点:重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。难点:多项式的次数。教学方法:分层次教学,讲授、练习相结合。教学过程:一、复习引入:1列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是 ;(2)某班有男生x人,女生21人,则这个班共有学生 人;(3)图中阴影部分的面积为_;(4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。(由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。)2观察以上所得出的四个
9、代数式与上节课所学单项式有何区别。(1)2(ab) ; (2)21x ; (3)ab ; (4)2a4b 。(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力。通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充。)二、讲授新课:1多项式:板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constant term)。例如,多项式有三项,它们是,2
10、x,5。其中5是常数项。一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式是一个二次三项式。注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。)2例题:例1:判断:多项式a3a2ab2b3的项为a3、a2、ab2、b3,次数为12;多项式3n42n21的次数为4,常数项为1。(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为a2b、b3,而往往很多同学都认为是a2b和b
11、3,不把符号包括在项中。另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。)例2:指出下列多项式的项和次数:(1)3x13x2; (2)4x32x2y2。解:略。例3:指出下列多项式是几次几项式。(1)x3x1; (2)x32x2y23y2。解:略。例4:已知代数式3xn(m1)x1是关于x的三次二项式,求m、n的条件。解:略。(让学生口答例2、例3,老师在黑板上规范书写格式。讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数。在例3讲完后插入整式的定义:单项式与多项式统称整式(integral expression)。例4分析时要
12、紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。)通过其中的反例练习及例题,强调应注意以下几点:6课堂练习:课本p59:1,2。填空:a2bab1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。已知代数式2x2mnx2y2是关于字母x、y的三次三项式,求m、n的条件。三、课堂小结:理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。(让学生小结,师生进行补充。)四、课堂作业: 课
13、本p60:3板书设计: 多项式1多项式的定义: 2例: 例: 学生练习: 教学后记:从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点。掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性。最后列举几个例子,与学生一起完成。教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成。要了解学生是否真正掌握本节课的内容,可
14、由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识。第3课时:整式(3)教学内容:补充内容,课本64页提到这个内容教学目的和要求:1理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。2通过尝试和交流,让学生体会到多项式升(降)幂排列的可行性和必要性。3初步体验排列组合思想与数学美感,培养学生的审美观。教学重点和难点:重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。教学方法:分层次教学,讲授、练习相结合。教学过程:一、复习引入:请运用加法交换律,任意交换多项式x2x1中各项的位置,可以得到几种不同的排列方式
15、?在众多的排列方式中,你认为那几种比较整齐? (以上由学生小组讨论,得出结果后,教师可投影演示,然后与全班同学共同探讨。充分发挥学生的主体作用,让学生成为知识的发现者,感受成功的喜悦,体验其中蕴含的数学美,增强学好数学的信心。)由讨论发现任意交换多项式x2x1中各项的位置,可以得到六种不同的排列方式,在众多的排列方式中,像x2x1与1xx2这样的排列比较整齐。二、讲授新课:1升幂排列与降幂排列:这两种排列有一个共同点,那就是x的指数是逐渐变小(或变大)的。我们把这种排列叫做升幂排列与降幂排列。(板书课题:升幂排列与降幂排列。)例如:把多项式5x23x2x31按x的指数从大到小的顺序排列,可以写
16、成2x35x23x1,这叫做这个多项式按字母x的降幂排列。若按x的指数从小到大的顺序排列,则写成13x5x22x3,这叫做这个多项式按字母x的升幂排列。板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constant term)。例如,多项式有三项,它们是,2x,5。其中5是常数项。一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式是一个二次三项式。注意:(1)多项式的次数不是所有项
17、的次数之和;(2)多项式的每一项都包括它前面的符号。(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。)2例题:例1:游戏:规则:五个学生上前自己选一张卡片,根据教师要求排成一列,下面同学把排列正确的式子写下来。35x311x7y52y7xy33x2y2例如: 2y7xy33x2y235x311x7y5按x降幂排列:式子:11x7y535x33x2y27xy32y(可激发学生的学习兴趣,活跃课堂气氛,帮助学生进一步理解新知,从活动中巩固新学知识。)例2:把多项式2r13r32r2按r升幂排列。解:按r的升幂排列为:。说明:是数
18、字,不是字母,题目中一次项、二次项、三次项系数分别为2、2、3。例3:把多项式a3b33a2b3ab2重新排列。(1)按a升幂排列; (2)按a降幂排列。解:(1)按a的升幂排列为:。(2)按a的降幂排列为:。想一想:观察上面两个排列,从字母b的角度看,它们又有何特点?(由学生参照例题自己解答。)例4: 把多项式12x2xx3y用适当的方式排列。分析:题中含有2个字母x和y,而各项中关于x的指数层次较全,因此,选择关于x的升(降)幂排列较为合理。解:按x的升幂排列为:。例5:把多项式x4y43x3y2xy25x2y3用适当的方式排列。(1)按字母x的升幂排列得: ;(2)按字母y的升幂排列得:
19、 。注意:(1)重新排列多项式时,每一项一定要连同它的符号一起移动;(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。三、课堂小结:对一个多项式进行排列,这样的写法除了美观之外,还会为今后的计算带来方便。在排列时我们要注意:重新排列多项式时,每一项一定要连同它的符号一起移动,原首项省略的“”号交换到后面时要添上;含有两个或两个以上字母的多项式,常常按照其中某一字母升(降)幂排列。板书设计: 升幂排列与降幂排列1升幂排列与降幂排列: 2例: 例: 学生练习: 教学后记:本节教学建立在学生掌握了整式的基础上,可先让学生运用已有知识任意排列多项式x2x1,为学生提供开放性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版七上 整式 加减 全部 教案 23
限制150内