《椭圆常考题型汇总及练习(共15页).doc》由会员分享,可在线阅读,更多相关《椭圆常考题型汇总及练习(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上椭圆常考题型汇总及练习第一部分:复习运用的知识(一) 椭圆几何性质椭圆第一定义:平面内与两定点距离和等于常数(大于)的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距. 椭圆的几何性质:以为例1. 范围: 由标准方程可知,椭圆上点的坐标都适合不等式,即说明椭圆位于直线和所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、轴、轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。3. 顶点(椭圆和它的对称轴的交点) 有四个:4. 长轴、短轴:叫椭圆的长轴,是长半轴长;叫椭圆的短轴,是短半轴长.5. 离心率 (1
2、) 椭圆焦距与长轴的比,(2) ,,即.这是椭圆的特征三角形,并且的值是椭圆的离心率.(3) 椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当接近于1时,越接近于,从而越小,椭圆越扁;当接近于0时,越接近于0,从而越大,椭圆越接近圆。6.通径(过椭圆的焦点且垂直于长轴的弦),.7.设为椭圆的两个焦点,为椭圆上一点,当三点不在同一直线上时,构成了一个三角形焦点三角形. 依椭圆的定义知:.(二)运用的知识点及公式1、两条直线垂直:则;两条直线垂直,则直线所在的向量2、韦达定理:若一元二次方程有两个不同的根,则。3、中点坐标公式:,其中是点的中点坐标。4、弦长公式:若点在直线上,则,这是
3、同点纵横坐标变换,是两大坐标变换技巧之一,或者。第二部分:椭圆常考题型解题方法典例一、椭圆定义相关题目例1、已知方程表示椭圆,求的取值范围解:由得,且满足条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例2、已知表示焦点在轴上的椭圆,求的取值范围解:方程可化为 因为焦点在轴上,所以因此且从而说明:(1)由椭圆的标准方程知,这是容易忽视的地方(2) 由焦点在轴上,知, (3) 求的取值范围时,应注意题目中的条件例3、 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程
4、分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须用点直线对称就可解决解:如图所示,焦点为,的坐标为(9,6),直线的方程为解方程组得交点的坐标为(5,4)所求椭圆的长轴:,又,因此,所求椭圆的方程为二、椭圆与直线的位置关系及弦长相关题目例4、 已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程解:(1)把直线方程代入椭圆方程得 ,即,解得(2) 设直线与椭圆的两个交点的横坐标为, 由(1)得,根据弦长公式得 :解得方程为说明:对比直线与椭圆和直线与圆的位置关系问
5、题及有关弦长问题的解题方法?这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式例5、 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长解:(法1)利用直线与椭圆相交的弦长公式求解(法2)利用椭圆的定义及余弦定理求解由题意可知椭圆方程为,设,则,在中,即;所以同理在中,用余弦定理得,所以(法3)利用焦半径求解先根据直线与椭圆联立的方程求出方程的两根,它们分别是,的横坐标再根据焦半径,从而求出三、轨迹方程相关题目例6、 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系
6、式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:例7、 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则(1) 将,代入,得,(2) 故所求直线方程为: 将代入椭圆方程得,符合题意,为所求(2)将代入得所求轨迹方程为:(椭圆内部分)(3
7、)将代入得所求轨迹方程为: (椭圆内部分)(4)由得:, , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 例8、 知圆,从这个圆上任意一点向轴作垂线段,求线段中点的轨迹解:说明:此题是利用相关点法求轨迹方程的方法,具体做法:首先设动点的坐标为,设已知轨迹上的点的坐标为,然后根据题目要求,使,与,建立等式关系,从而由这些等式关系求出和代入已知的轨迹方程,就可以求出关于,的方程,化简后即我们所求的方程这种方法是求轨迹方程的最基本的方法,必须掌握例9、 已知是直线被椭圆所截得的线段的中点,求直线的方程 分析:“设而不求”法解:方法一:设所求直线方程为代入椭圆方程,整理 设直线与
8、椭圆的交点为,则、是的两根,为中点,所求直线方程为方法二:(点差法)设直线与椭圆交点,为中点,又,在椭圆上,两式相减得,即直线方程为方法三:(数形结合)设所求直线与椭圆的一个交点为,另一个交点、在椭圆上,。 从而,在方程的图形上,而过、的直线只有一条,直线方程为说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法四、探索问题及其他例10、 已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上利用上述条件建立的不等式即可求得的取值范围解:(法1)
9、设椭圆上,两点关于直线对称,直线与交于点的斜率,设直线的方程为由方程组消去得。于是,即点的坐标为点在直线上,解得将式代入式得,是椭圆上的两点,解得(法2)同解法1得出,即点坐标为,为椭圆上的两点,点在椭圆的内部,解得(法3)设,是椭圆上关于对称的两点,直线与的交点的坐标为,在椭圆上,两式相减得,即又直线,即。又点在直线上,。由,得点的坐标为以下同解法2.说明:涉及椭圆上两点,关于直线恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:(1)利用直线与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式,建立参数方程(2)利用弦的中点在椭圆内部,满足,
10、将,利用参数表示,建立参数不等式例11 在面积为1的中,建立适当的坐标系,求出以、为焦点且过点的椭圆方程解:以的中点为原点,所在直线为轴建立直角坐标系,设则即得所求椭圆方程为例12、 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹分析:(1)由已知可得,再用椭圆定义求解由的轨迹方程、坐标的关系,利用代入法求的轨迹方程解: (1)以所在的直线为轴,中点为原点建立直角坐标系设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点因,有,故其方程为(2)设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)第三部分:椭圆常考题型解题方法针对性习题1、过点T(-1,
11、0)作直线与曲线N :交于A、B两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。2、已知椭圆C:的离心率为,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。(I)求椭圆的方程;(II)若直线与x轴交于点T,点P为直线上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论椭圆常考题型解题方法针对性习题答案1、解:依题意知,直线的斜率存在,且不等于0。设直线,。由消y整理,得 由直线和抛物线交于两点,得 即 由韦达定理,得:。则线段AB的中点为。线段的垂直平分线方程为:令y=0,得,则为正三角形,到直线AB的距离d为。 解得满足式, 此时。2、解:(I)由已知椭圆C的离心率,,则得。从而椭圆的方程为(II)设,直线的斜率为,则直线的方程为,由消y整理得是方程的两个根, 则,即点M的坐标为,同理,设直线A2N的斜率为k2,则得点N的坐标为 ,直线MN的方程为:,令y=0,得,将点M、N的坐标代入,化简后得:又, 椭圆的焦点为 ,即 故当时,MN过椭圆的焦点。专心-专注-专业
限制150内