线性回归方程(共11页).doc
《线性回归方程(共11页).doc》由会员分享,可在线阅读,更多相关《线性回归方程(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上环球雅思学科教师辅导讲义讲义编号: 组长签字: 签字日期: 学员编号: 年 级: 高二 课时数:3学员姓名: 辅导科目: 数学 学科教师:闫建斌课 题线性回归方程授课日期及时段2014-2-11 18:00-20:00教学目标线性回归方程基础重点、难点教 学 内 容1、本周错题讲解2、知识点梳理1线性回归方程变量之间的两类关系:函数关系与相关关系制作散点图,判断线性相关关系线性回归方程:(最小二乘法)最小二乘法:求回归直线,使得样本数据的点到它的距离的平方最小的方法 注意:线性回归直线经过定点2相关系数(判定两个变量线性相关性):注:0时,变量正相关; 0时,变量负相
2、关; 越接近于1,两个变量的线性相关性越强; 接近于0时,两个变量之间几乎不存在线性相关关系。3线形回归模型:随机误差:我们把线性回归模型,其中为模型的未知参数,称为随机误差。 随机误差残差:我们用回归方程中的估计,随机误差,所以是的估计量,故,称为相应于点的残差。回归效果判定-相关指数(解释变量对于预报变量的贡献率) (的表达式中确定)注:得知越大,说明残差平方和越小,则模型拟合效果越好;越接近于1,则回归效果越好。4独立性检验(分类变量关系):(1)分类变量:这种变量的不同“值”表示个体所属的不同类别的变量。(2)列联表:列出两个分类变量的频数表,称为列联表。(3)对于列联表:的观测值。(
3、4)临界值表:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828如果,就推断“有关系”,这种推断犯错误的概率不超过;否则,在样本数据中没有发现足够证据支持结论“有关系”。(5)反证法与独立性检验原理的比较:反证法原理在假设下,如果推出矛盾,就证明了不成立。独立性检验原理在假设下,如果出现一个与相矛盾的小概率事件,就推断不成立,且该推断犯错误的概率不超过这个小概率。典型例题1(2011山东)某产品的广告费用x与销售额y的统计数据如下表:广告费用x/万元423
4、5销售额y/万元49263954根据上表可得回归方程x中的为9.4,据此模型预报广告费用为6万元时销售额为 ()A63.6万元 B65.5万元C67.7万元 D72.0万元解析,42,又x必过(,),429.4,9.1.线性回归方程为9.4x9.1.当x6时,9.469.165.5(万元)答案B2(2011江西)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x/cm174176176176178儿子身高y/cm175175176177177则y对x的线性回归方程为 ()A.x1 B.x1C.88x D.176解析因为176,176,又y对x的线性回归方程表示的直线恒
5、过点(,),所以将(176,176)代入A、B、C、D中检验知选C.答案C3(2011陕西)设(x1,y1),(x2,y2),(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()Ax和y的相关系数为直线l的斜率Bx和y的相关系数在0到1之间C当n为偶数时,分布在l两侧的样本点的个数一定相同D直线l过点(,)解析因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以A、B错误C中n为偶数时,分布在l两侧的样本点的个数可以不相同,所以C错误根据回归直线方程一定经过样本中心点
6、可知D正确,所以选D.答案D4(2011广东)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:时间x12345命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为_;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为_解析小李这5天的平均投篮命中率0.5,可求得小李这5天的平均打篮球时间3.根据表中数据可求得0.01,0.47,故回归直线方程为0.470.01x,将x6代入得6号打6小时篮球的投篮命中率约为0.53.答案0.50.535(2011辽宁)调查了某地若干户家庭
7、的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:0.254x0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元解析由题意知0.254(x1)0.321(0.254x0.321)0.254.答案0.2546(2011安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份20022004200620082010需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程x;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求
8、量解(1)由所给数据看出,年需求量与年份之间是近似直线上升的,下面求回归直线方程为此对数据预处理如下:年份200642024需求量257211101929对预处理后的数据,容易算得0,3.2.6.5,b3.由上述计算结果,知所求回归直线方程为257(x2 006)6.5(x2 006)3.2,即6.5(x2 006)260.2.(2)利用直线方程,可预测2012年的粮食需求量为65(20122006)260.26.56260.2299.2(万吨)课堂练习1实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.x1B.x2 C.2x1 D
9、.x12在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是()A甲 B乙 C甲、乙相同 D不确定3某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得xi52,yi228,x478,xiyi1849,则其线性回归方程为()A.11.472.62x B.11.472.62xC.2.6211.47x D.11.472.62x4下表是某厂14月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是0.7
10、xa,则a等于_5某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程bxa,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少小时?课后练习一、选择题1实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.x1B.x2C.2x1 D.x1答案A解析画出散点图,四点都在直线x1.2下列有关样本相关系数的说法不正确的是()A相关系数用来衡量变量x与y之间的线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性 回归 方程 11
限制150内